
How to use Rohde & Schwarz®

Instruments with LabVIEWTM

Application Note

Having the possibility to remotely control instruments has become the necessity not only in the field of
automated production testing but more and more already in the phase of development. One of the pro-
gramming environments that makes this task accessible for designers with very little or no programming
experience is LabVIEW. To make the remote control of instruments easier, Rohde & Schwarz provides the
LabVIEW Instrument drivers that take away the burden of controlling, synchronization, response format-
ting and error handling from the developer.

This paper explains how to use Rohde & Schwarz instruments together with LabVIEW in order to prepare
an automated measurement task quickly and efficiently. It focuses mainly on using Rohde & Schwarz Lab-
VIEW Instrument drivers, in addition in several occasions it also shows comparisons with the approach of
raw SCPI communication.

The Application note comes with two Quick Drop plugins for LabVIEW. One integrates searching for a
desired instrument command, the second one automates the Block Diagram connection and alignment of
driver subVIs. Instrument Drivers LabVIEW ─ 1MA228_4e

Contents
1 Introduction.. 3

2 About LabVIEW drivers... 4

3 Getting started with using attribute-based drivers.............................9

4 Quick Drop Plugins..14

5 Driver Express VI... 20

6 Performance comparison..39

7 Tips and Tricks...43

8 Additional Information...51

9 Rohde & Schwarz...52

http://www.rohde-schwarz.com/appnote/1MA228

Introduction

3Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

1 Introduction
Rohde & Schwarz provides a range of free Instrument Drivers (further referred to as
'drivers') (follow the link Rohde & Schwarz drivers) to simplify the development proc-
ess of instrument remote control applications. Among them are LabVIEW attribute-
based drivers. These drivers utilize the Express VI technology which internally takes
advantage of VI scripting - programmatically creating and modifying VIs. In all new
Rohde & Schwarz drivers releases we introduce the Fast Read and the Fast Write
possibility. This feature removes one common disadvantage that has discouraged
users from using drivers - speed of execution. More about this topic is discussed in
chapter 5, "Driver Express VI", on page 20 and chapter 6, "Performance compari-
son", on page 39.

For demonstration purposes the Rohde & Schwarz LabVIEW driver for Spectrum Ana-
lyzers (rsspecan) is used in this Application Note. However, the presented procedure
is applicable to all Rohde & Schwarz drivers. The Spectrum Analyzer driver is chosen
because it represents the most comprehensive application when communicating with
any other instrument – settings, waiting for the measurement result, reading the results
either in strings or arrays of numbers.

Microsoft® and Windows® are U.S. registered trademarks of the Microsoft Corporation.

R&S® is a registered trademark of Rohde & Schwarz® GmbH & Co. KG.

National Instruments® are U.S. registered trademarks of National Instruments.

LabVIEWTM is a trademark of National Instruments.

1.1 Required Software

To follow the steps described in this Application Note the following software is required:

● Windows XP/Vista/7 32-bit/64-bit operating system
● LabVIEW 2010 or later 32-bit/64-bit
● VISA I/O library (e.g. National Instruments VISA Version 5.x)

The configuration used in for this Application Note: Windows 7 64-bit, LabVIEW 2010
32-bit, NI VISA 5.4.0, used driver in all examples is rsspecan LabVIEW driver version
3.3.1, R&S Instrument driver toolbox (rsidr_toolbox) version 4.2.0

1.2 Related Documents

The Application Notes discussing remote-control drivers and their usage:

● 1MA153: Development Hints and Best Practices for Using Instrument Drivers
● 1MA170: Introduction to Attribute Based Instrument Drivers

Required Software

http://www.rohde-schwarz.com/en/driver/remote-control/overview_110753.html
http://www.rohde-schwarz.com/appnote/1MA153
http://www.rohde-schwarz.com/appnote/1MA170

About LabVIEW drivers

4Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

2 About LabVIEW drivers

2.1 LabVIEW driver types

Over the time Rohde & Schwarz LabVIEW driver technologies have gone through sev-
eral phases of improvement due to internal and external factors (more instrument
capabilities and higher complexity, driver specification changes...). Currently, Rohde &
Schwarz LabVIEW drivers can be split into three groups (in order from older to newer):

2.1.1 Non-attribute based driver

This type has direct VISA Write.vi and VISA Read.vi inside the function VI. This
approach is not used anymore, because they are difficult to maintain, they don't per-
form error checking and if used with modern spectrum analyzers or signal generators,
the driver would contain thousands of VIs. (e.g. rsrfsiggen driver has over 4000 attrib-
utes which would result in over 8000 VIs (read/write).

Installation: Copy the instr.lib folder to
c:\Program Files (x86)\National Instruments\LabVIEW 2010\
In the drivers released before 2015 the folder user.lib is either not present in the
installation package or it is empty. In the later ones it contains a Crosslinks.bin file
for Quick Drop SCPI command searcher. Refer to chapter 4.1, "SCPI command
searcher plugin", on page 15 for more details.

Fig. 2-1: Example of non-attribute based FSEx driver function VI.

LabVIEW driver types

About LabVIEW drivers

5Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

2.1.2 DLL-wrapper around the VXI plug&play driver

This type of driver uses the VXI plug&play dll library. Although there are some advan-
tages to this approach (common source code for all types of drivers, faster execution
speed, smaller load on memory and disk space), the main disadvantage is that it's not
a LabVIEW code and the user cannot see it or alter it. Therefore this type is now only
used for older instruments and for the ones that use proprietary communication proto-
cols without VISA support (e.g. USB NRP-Z power sensors).The dll-wrapper drivers
are easily recognizable, by msi installation package, since they always require installa-
tion of VXI plug&play driver.

Installation: The driver installation is a msi package that installs VXI plug&play driver
and LabVIEW VIs to:
c:\Program Files (x86)\IVI Foundation\VISA\GWinNT\<driver_name>
To have the access to the driver palette, copy the folder <driver_name> to
c:\Program Files (x86)\National Instruments\LabVIEW 2010\
instr.lib\ folder and restart LabVIEW.

Fig. 2-2: Example of dll-based RSUPV driver.

2.1.3 Attribute-based driver

This type is the newest one that is also the subject of this Application Note. Instrument
functionalities are split into attributes which can be set or read separately using Attrib-
ute Express VIs (further referred to as 'Express VI'). Configured Express VIs (Express
VI instances) are used in the driver Hi-level functions (see the example of such Hi-
level function below). In occasions, custom LabVIEW code is used when the desired

LabVIEW driver types

About LabVIEW drivers

6Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

functionality cannot be performed by attributes (for example reading the analyzer trace,
setting/reading a property that contains a cluster of parameters).

Installation: Copy both folders instr.lib and user.lib to
c:\Program Files (x86)\National Instruments\LabVIEW 2010\
Folder instr.lib contains the driver Hi-level functions, user.lib contains the driv-
er's attribute Express VI. It also contains the Crosslinks.bin file which is an index-
ing file used by Quick Drop SCPI command searcher plugin. Refer to chapter 4.1,
"SCPI command searcher plugin", on page 15 for more details.

Example of an attribute-based driver Hi-level function for setting center frequency and
span using two Express VI instances (enclosed by red rectangle):

Fig. 2-3: Example of attribute-based rsspecan driver Hi-level function VI for setting center frequency
and span using two Express VI instances.

After restarting LabVIEW, the driver functions are accessible through palette menu:

LabVIEW driver types

About LabVIEW drivers

7Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 2-4: Rohde & Schwarz Spectrum Analyzer driver in LabVIEW palette view under Instrument I/O ->
Instrument Drivers -> Rohde & Schwarz Spectrum Analyzer.

Palette menu node pictures (e.g. Configuration) are stored in dir.mnu files in every
driver folder and sub-folders. The tree-structure in the palette corresponds to the help
file (Microsoft compressed html file format *.chm) provided for every Rohde & Schwarz
driver:

LabVIEW driver types

About LabVIEW drivers

8Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 2-5: Rohde & Schwarz Spectrum Analyzer driver help file rsspecan.chm

2.1.3.1 Repeated Capabilities in Attribute-based drivers

Many instruments contain multiple instances of the same type of functionality. For
example, many instruments have multiple channels, windows or traces with independ-
ent settings. The general term for functionality that is duplicated in an instrument is
repeated capability. An instrument may have multiple sets of repeated capabilities,
such as windows and traces, or markers. Repeated capability instances are specified
by a string parameter to each function that accesses the repeated capability. To define
the usage of a particular capability fill the string with a proper value. To use more than
one repeated capability in one attribute, separate them with comma. In the driver
Express VI Configuration panel the input string control for Repeated Capabilities is
called RepCaps. Composing of this string is made easy by a table with only valid val-
ues allowed.

LabVIEW driver types

Getting started with using attribute-based drivers

9Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

3 Getting started with using attribute-based
drivers

3.1 Driver structure

The LabVIEW driver consists of a multi-level folder and file library forming a tree-struc-
ture that corresponds to the help file Contents node Instrument Driver Tree Structure
or shortly VI Tree. This structure is also reflected in <driver_name> VI Tree.vi.

The root folder is different for a project-based drivers (newer type) and previously used
non-project-based drivers:

● Project-based drivers have no <driver_name> prefix for the VIs, because the
driver prefix is the name of the project they are members of. They contain 2 folders:
Private and Public. Private is reserved only for internal driver use, Public
is the root folder for the user.

● Non-Project drivers have <driver_name> prefix for all VIs and there are no
restrictions to the availability of VIs. <driver_name> folder is the root folder for
the user.

The following files can be found in the user root folder (VI names mentioned here are
without <driver_name> prefix):

● driver help file <driver_name>.chm

Microsoft CHM file that gives an overview of the driver structure: Hi-level functions,
attributes (by linking the driver's attribute help file mentioned below), additional
driver information.

● driver's attribute help file <driver_name>_attr.chm

Microsoft CHM file that shows the attribute tree structure which is used by the
Express VI Tree control to access the desired attribute.

● Initialize.vi

Driver structure

Getting started with using attribute-based drivers

10Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

This is a basic VI that opens a session to the instrument based on the input VISA
resource name. Output VISA session is then used throughout the driver as a han-
dle for communication with that specific instrument. VISA session is compatible
with all VISA palette VIs, including VISA Read.vi and VISA Write.vi.

Important!: Don't use VISA Open.vi from LabVIEW palette to initialize a ses-
sion, because Initialize.vi also creates additional data for the session
that are needed later on.

Optional parameters are Reset (defines whether to send *RST to the instrument
after initialization) and ID Query (checks based on the instrument response to
*IDN? query whether it is among the listed supported devices for this driver). In
special occasions you might want to disable ID Query if you are sure that the
driver can handle your instrument. Disable Reset if your instrument already has a
setting that you don't want to lose.

● Close.vi

This VI closes the instrument session and frees all additional session data.

Important!: Don't use VISA Close.vi from LabVIEW palette to close a ses-
sion, because Close.vi also clears all additional session data that the
Initialize.vi has created.

● Utility folder (don't mix with _utility) is outlined in the next chapter.

Driver structure

Getting started with using attribute-based drivers

11Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

3.1.1 Utility folder functions

Fig. 3-1: rsspecan LabVIEW Utility palette.

This folder contains VIs that change the driver's behavior, error handling VIs, instru-
ment reset and self-test VIs, etc... The following chapters will describe the ones most
commonly used.

3.1.1.1 Error Message.vi

This VI is a wrapper over the generic LabVIEW General Error Handler.vi that
also translates the driver error codes to human readable form. Use this VI instead of
the General Error Handler.vi to confortably handle the driver errors.

3.1.1.2 Instrument Status Checking.vi

This VI changes the session based parameter ErrorChecking which is set to ON dur-
ing initialization. When ON, the driver calls the VI _check_error.vi (see below) that

Driver structure

Getting started with using attribute-based drivers

12Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

sends the SCPI query *STB? after each command/query, checks the bit 2 of the Sta-
tus register (Error Queue not empty) and reports an eventual errors to the error cluster.

Set this parameter to OFF for sections of your code that require fast execution speed.
Refer to chapter 6, "Performance comparison", on page 39.

3.1.1.3 Option Checking.vi

This VI changes the session based parameter OptionChecking which is set to ON
during initialization. Some instrument commands require certain software or hardware
options to be available. The driver checks whether a required option is available on the
instrument before it sends the command.

3.1.1.4 Configure Error Checking.vi

This VI combines the settings of both previous VIs, plus the RangeChecking settings
which is set to ON during initialization. Switch the RangeChecking off in special cases
when you are sure your instrument accepts the values outside the range allowed by
the driver.

3.1.1.5 _check_error.vi

This VI is used to detect whether an instrument has any message in its error queue.
First, the VI sends SCPI query *STB? and checks the bit 2 (Error Queue not empty). If
this bit is set to 1, SYST:ERR? reads and deletes the 1st entry from instrument error
queue. If you used Instrument Status Checking.vi to set the ErrorChecking
to OFF, there might be more than 1 errors in the queue. Therefore, in order to delete
all the error messages, you must call this VI in a loop until it reports no error in error
out cluster.

Note: LabVIEW doesn't put VIs whose names start with underscore to palettes. There-
fore you will not find _check_error.vi in Utilities LabVIEW palette. You have to use
your file explorer or Quick Drop (CTRL+Space) to access it.

Driver structure

Getting started with using attribute-based drivers

13Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

3.1.1.6 Get Timeout.vi / Set Timeout.vi

These VIs get/set session based parameter OPCtimeout - waiting for the operation to
be completed (e.g. measurement sweep). The driver synchronizes with the instrument
by sending *OPC (not *OPC?) at the end of the command and then periodically polling
the Status register bit 6 (OPC).

Important!: Because of this synchronization mechanism, the VISA Timeout
parameter has no effect on the driver's measurement timeout. You need to
change this custom session based parameter to prevent long measurement
timeout errors.

3.1.1.7 Revision Query.vi

This VI returns the driver version and instrument firmware version.

3.1.1.8 Reset.vi

This VI sends *RST to the instrument, waits for the reset to be completed and applies a
default instrument setup, same as during the initialization.

3.1.1.9 Instrument IO folder

This folder contains VIs for direct SCPI queries and VIs for transferring files between
the PC and the instrument. Direct SCPI command writing can be performed with
VISA Write.vi from the LabVIEW VISA palette.

Driver structure

Quick Drop Plugins

14Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

4 Quick Drop Plugins
Quick Drop plugins are available for all the drivers released in 2015 and later. The
older drivers will be gradually updated to be able to use these plugins

Quick Drop plugins SCPI command searcher and Connect and Align are part of
rsidr_toolbox library shared by all drivers. The rsidr_toolbox also contains Express
VI configuration panel. To achieve the best performance, all the Block Diagrams are
removed during the deployment.

Installation: Download and run the rsidrToolboxInstall.vi that is available as
an attachment to this application note: http://www.rohde-schwarz.com/appnote/
1MA228 The VI will deploy or update the content of user.lib_rsidr_toolbox
folder and copy the Quick Drop Plugins SCPI command searcher (RS_Drivers.vi)
and Connect and Align (RS_toolbox.vi) to the Quick Drop plugins folder
resource\dialog\QuickDrop\plugins
Usage: On the Block Diagram activate the Quick Drop with the CTRL+SPACE short-
cut (the first activation is slower, because the Quick Drop window populates the list of
all functions and palettes). Then use the plugin-specific keyboard shortcut (see the
description if the following chapters). A different shortcut can be set in the Quick Drop
Shortcuts settings:

If a desired shortcut is already occupied, you will have to change it directly in the
C:\Program Files (x86)\National Instruments\LabVIEW 2010\
LabVIEW.ini file, key name QuickDropKeyboardShortcutMappings.

http://www.rohde-schwarz.com/appnote/1MA228
http://www.rohde-schwarz.com/appnote/1MA228

Quick Drop Plugins

15Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

4.1 SCPI command searcher plugin

Default keyboard shortcut: CTRL+F (After CTRL+SPACE)

The SCPI command searcher will scan all the installed drivers for the indexing file
called Crosslinks.bin and give you a selection of the available ones. You can
search for either a SCPI command or an attribute / function name. The SCPI command
search uses a special matching method based on the SCPI commands syntax so the
commands can be in short form, long form, copy and paste directly from a device user
manual, non-mandatory parts can be skipped and so on... The matching results will be
displayed in the middle listbox.

After selecting the SCPI command of your choice the right listbox will contain all the
functions and attributes that use this SCPI command. Simply Drag and Drop the
desired element to your Block Diagram. Alternatively, use the double-click on the ele-
ment to show it on the Functions Palette. The right-click context menu allow for open-
ing element Help topic, copying as text, showing the element on Palette and opening a
folder containing the selected element.

Dragging and Dropping the Attribute ID to your Block Diagram will invoke the Express
VI Configuration Window with pre-selected Attribute ID.

Fig. 4-1: SCPI command searcher window.

The configuration of the Express VI is described in the next chapter.

The SCPI command searcher also allows for the following functionalities:

● If you select the driver Express VI on you Block Diagram and invoke SCPI com-
mand searcher, it will automatically select the proper driver and search for the ele-
ments that are related to the Express VI instance attribute. In the picture below the
attribute RSSPECAN_ATTR_SWEEP_MODE_CONTINUOUS shows that is used in e.g.
Configure Aquisition.vi function and sends the INIT:CONT SCPI com-
mand:

SCPI command searcher plugin

Quick Drop Plugins

16Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 4-2: SCPI command searcher invoked with selected driver Express VI function.

● If you select the driver Hi-level function on your Block Diagram and invoke SCPI
command searcher, it will automatically select the proper driver and search for the
elements that are related to the Hi-level function. In the picture below the Hi-level
function Configure Acquisition.vi uses two attributes and 2 SCPI com-
mands (two for each attribute - one form is used in the instrument manual, the 2nd
is actually sent by the driver):

Fig. 4-3: SCPI command searcher invoked with selected driver Hi-level function.

● Clipboard monitoring is a useful when you browse the device user manual - copy-
ing the SCPI command will immediately trigger the search and displays the result.
Also, browsing the driver help file and copying the function / attribute name will
help you to immediately drag it to your Block Diagram instead of searching the
palette or your disk folders. See the short video attached to this application note
showing how you can quickly compose your program in combination with an instru-
ment user manual.

4.2 Connect and Align plugin

Default keyboard shortcut: CTRL+A (After CTRL+SPACE). This plugin will speed up
the tedious tasks of connecting your driver VI nodes and terminals together with VISA
and error cluster wires. It takes the X-coordinates of the selected objects on your Block

Connect and Align plugin

Quick Drop Plugins

17Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Diagram and aligns them into a chain by moving them and making horizontal space.
Here are the main features that of this plugin:

● The order of connection is only defined by the X-coordinate of an object in the
selection.

● The connection and alignment works not only on the driver VIs, but on all nodes
with error in/out terminals. VISA terminals are optional.

● If a node doesn't have a VISA terminal, the plugin tries to find a next node or termi-
nal of the VISA type (see the example pictures below).

● By default, the Y-alignment is done according the most-left object in the selection.
Using CTRL+SHIFT+A changes that to the most-right selected object.

● The plugin also works without any nodes - just on tunnels and/or control terminals.
● Wiring through tunnels is done in a smart way - if a tunnel is in your selection, it will

be reused instead of creating a new one which would lead to a parallel tunnel that
is hard to spot.

● If a Case Structure Selector is in the selection, the error cluster will be rewired
through it, and all existing connections inside all case diagrams will be maintained.
The same rule applies for Shift Registers.

Here are some before and after pictures showing the plugin capabilities. First, you
need to perform a selection either by area or selecting individual objects. Then invoke
the Quick Drop by CTRL+F, and run the plugin by CTRL+A:

● Connecting terminals with the driver VIs. The left-most node, error terminal or error
tunnel is used as for Y-alignment:

● Selecting the new nodes and the error / VISA wires that start left to the selection
and end right to the selection will insert the nodes into the chain:

Connect and Align plugin

Quick Drop Plugins

18Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

● Adding a VI in the middle of an existing chain by selecting also left and right node.
All the nodes on the right are shifted to make required space:

● Connecting through a Case Structure with its case selector terminal included in the
selection. The error cluster is wired through the case selector terminal. Notice the
VISA tunnels being reused and thus maintaining the other cases of the Case Struc-
ture properly connected. The Property node without a VISA terminal is still connec-
ted to the error wire. Direct cmd in/out terminals of Express VIs with are intercon-
nected as well:

Connect and Align plugin

Quick Drop Plugins

19Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

● Connecting through a Loop structure with Shift Register included in the selection.
resulting in connecting it to the error wire. No unnecessary new tunnels are created
through the loop structure and the tunnels auto-indexing is disabled. All the termi-
nals have labels shifted to left or right to make the diagram more compact.

Connect and Align plugin

Driver Express VI

20Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

5 Driver Express VI
This chapter describes the driver Express VI used for setting the driver attributes. This
Express VI is a part of a rsidr_toolbox library and will be commonly used by all instal-
led Rohde & Schwarz drivers. The rsidr_toolbox library is installed with the first use of
Express VI Configuration panel, or you can install it manually - refer to chapter 4,
"Quick Drop Plugins", on page 14.

Why should you use Attributes Express VI? There are several reasons to do so:

● Performance: The driver even with ErrorChecking switched OFF (chap-
ter 3.1.1.2, "Instrument Status Checking.vi", on page 11) still has an overhead
which in certain applications may prove too high. For these cases Express VI offers
Fast Write and Fast Read operations that compose most of the SCPI command
during the configuration phase. If you use fixed input parameter value, the entire
SCPI command string is prepared just to perform VISA Write operation during the
execution. Also, rather than sending SCPI commands one by one they can be
composed into one string and then sent all at once to the instrument. Read more in
chapter 5.2, "Express VI in drivers", on page 22 and chapter 6, "Performance
comparison", on page 39.

● Reading attribute (parameter) value: Due to a large number of attributes, the
driver doesn't provide all Hi-level functions for retrieving attribute values. For exam-
ple, you can set the spectrum analyzer center frequency with
Configure Frequency Center.vi, but there is no function to read it back.
Here, you have to use Express VI configured to Read operation with the attribute
RSSPECAN_ATTR_FREQUENCY_CENTER.

● Setting just one attribute (parameter) separately: The driver Hi-level functions
are very often programmed with certain logic inside - they group setting of several
attributes together. If you just wish to set one attribute, you have to use Express VI.

● Non-availability of Hi-level function: To minimize the size, the new Rohde &
Schwarz drivers are missing Hi-level functions that set just one attribute. There are
some exceptions to this for legacy reasons, or IVI specification requirements. If you
cannot find a Hi-level function using the attribute you need, you can always access
it by Express VI.

5.1 General principle of LabVIEW Express VI

A Express VI consists of 3 parts:

● Execution Code VI - VI with the actual execution code during the run-time.
● Configuration VI - this VI is invoked when you double-click on any Source

Express VI instance in your code. The Configuration VI has a front panel and
based on the settings it will modify the content of that Source Express VI instance.

● Source Express VI - this is the VI we refer to as Express VI. If you place the
Express VI into your code, you create anExpress VI instance (Source Express VI
with a certain configuration) and this is what you see in your code. In principle, it's
a wrapper over the Execution Code VI with configurable content (inputs, outputs,

General principle of LabVIEW Express VI

Driver Express VI

21Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

constants, setting default values for controls...). Compared to a normal VI, the
Express VI instance has 2 special properties:
– it is not saved as a separate VI, but directly inside a parent VI. Every Express

VI instance is unique, therefore the more of them you have, the bigger your
parent VI gets.

– it is reconfigurable by Configuration VI. Configuration starts when you double-
click on its icon or select Context Menu ￫ Properties. If you want to see the
content of your Express VI instance, you have to convert it to a standard VI by
context menu item Open Front Panel. However, you cannot reconfigure it
again, and you have to save it separately as a standard VI. The Source
Express VI is visually distinguished from standard VI by light-blue frame around
it:

The following picture shows the example of a simple Express VI that can be configured
to perform a math operation between 2 numbers. On a picture below, the Express VI
instance is configured to give a result of A+B. Configuration VI can also take care of
connecting the terminals to the Source Express VI connector and by doing so changing
their accessibility to the user. To find out more on the topic of Express VI, enter "Lab-
VIEW Express VI Development Toolkit User Guide" into your search engine. For the
purposes of this document we will refer to the Configuration VI as the Configuration
panel.

Fig. 5-1: Basic structure of Express VI. An instance of Express VI is visible in your code.

General principle of LabVIEW Express VI

Driver Express VI

22Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

5.2 Express VI in drivers

The Express VI for the rsspecan driver is located in
c:\Program Files\National Instruments\LabVIEW 2010\user.lib\
_express\rsspecan\rsspecan_core_attribute_expressSource.llb
library. This library contains Source Express VI and the Execution Code VI that is
executed during run-time. The Express VI has always Source in its name. You cannot
drag and drop it to the block diagram from llb (limitation of llb format). You have to use
one of the following options to access the Express VI:

● Using Quick Drop SCPI command searcher: (refer to chapter 4.1, "SCPI com-
mand searcher plugin", on page 15 on how to install it). On the Block Diagram
press CTRL+Space and then CTRL+F:

● Using Instrument I/O palette: Refer to figure 2-4

● Using User Libraries palette:

Fig. 5-2: The Express VI instance can be placed in the Block Diagram by Functions palette ->
User Libraries -> Express User Libraries -> rsspecan -> rsspecan Expr VI

● Copying from existing code: Use the driver Hi-level function e.g. figure 2-3 to
copy the instances of Express VI from. Copying the Express VI instance also cop-
ies its configuration. Rich-text VI title will be replaced by plain text, because Lab-

Express VI in drivers

Driver Express VI

23Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

VIEW will add an index number at the end of the title to distinguish between the
instances. You have to run the Configuration panel to get it back to rich-text title.

Using Palettes or Quick Drop will immediately invoke Configuration panel linked to
Express VI. To disable this, go to Menu -> Tools ->Options -> Block Diagram and
uncheck the checkbox Configure Express VIs immediately.

Fig. 5-3: Configure Express VIs immediately settings.

LabVIEW places the Express VI instance on your Block Diagram in full view:

Fig. 5-4: Express VI instance in full view.

You can explore available terminals by dragging red-marked arrow:

Express VI in drivers

Driver Express VI

24Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 5-5: Express VI instance with expanded terminals.

Right-click context menu item View As Icon switches to standard Icon view:

After placing / reconfiguring the Express VI instance you can simply make copies of it
in your Block Diagram by CTRL+C/V or CTRL+Dragging (making a copy) or CTRL
+SHIFT+Dragging (making a copy with vertical or horizontal alignment). The Express
VI instance configuration is copied as well. Configuration panel also generates quick
help content. You can view it in Context Help window (shortcut CTRL+H). As an exam-
ple see figure 5-13.

5.3 Express VI Configuration panel

Double-clicking on an Express VI instance or selecting Context-menu -> Properties
brings up the Configuration panel. See how to speed up the loading of the Express VI
Configuration panel here: chapter 7.3.3, "Mass-compile your driver before the use",
on page 47.

Below, the Configuration panel is described in detail:

Express VI Configuration panel

Driver Express VI

25Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 5-6: Express VI Configuration panel.

● 1 - Select Attribute control: This control represents the tree-structure of driver
attributes, same as you can find in rsspecan_attr.chm. Based on the selected
attribute, the availability of other controls will change accordingly (e.g. read/write
access, RepCaps, Input data type ...).
Right-click context menu allows for opening/closing all elements, focusing on item,
copying of attribute details to the text clipboard and defining the content up to 6 col-
umns from following attribute values: Descriptive name, Identifier, Identifier without
prefix, Raw Command, Raw Command without { } portions, Data Type, Access,
RepCap Definition, R/W Callbacks, Models and Options, Hi-level Functions,
Range, Help Command, Range Reference.
Clicking on the column header allows the ascending/descending sorting by that
parameter. Sorted column is displayed in bold font with ascending or descending
symbol at the beginning. Sorting works best with flatten structure of the attributes
tree.

● 3 - Flatten the Attribute tree: If checked, all Select Attribute control nodes are
removed and the entire content is shown as a list.

● 4 - Filter: If ON, only the attributes fulfilling the Filter criteria (defined in 7c) and
Main Nodes (defined in 7d) will be visible.

● 5 - Find All: If ON, only the attributes fulfilling the Find criteria (defined in 7b) will
be visible. You can combine Filter and Find criteria to perform logical AND opera-
tion between them.

● 7a .. 7h: Refer to chapter 5.3.2, "7a .. 7f tab control tabs", on page 28.

Express VI Configuration panel

Driver Express VI

26Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

● 8 - Attribute operation: Refer to chapter 5.3.1, "8 - Attribute operation control",
on page 27.

● 9 - Post operation: Depending on selected Attribute operation, *WAI / *OPC?
synchronization and Error Checking are available. Refer to chapter 5.3.1, "8 -
Attribute operation control", on page 27. For details on different synchronization
methods refer to chapter 7.2, "Synchronization methods", on page 44.

● 10 - RepCaps string control: This string contains values for repeated capabilities
defined in SCPI command by information in curly brackets. Repeated capabilities
are case sensitive, separated by comma (if there are more than one), no spaces
are allowed. Actual values depend on attribute definition and can be found in attrib-
ute help under Supported Repeated Capabilities. If the selected attribute has 1
or more Repeated capabilities defined, this control is enabled for editing. Invalid
repeated capabilities string will be marked with red label and will disable OK button
(14). Repeated capabilities string is allowed to be empty for standard Read/Write
operation (if no variable RepCaps are selected), for all others it must be valid. Edit-
ing options besides free writing:
– Right-click context menu Fill with 1st options will set the first valid Repeated

capabilities string.
– Double-click on empty RepCaps string control will do the same as Fill with 1st

options, or in case the attribute has no definition for Repeated capabilities,
RepCaps string control will be cleared.

– Double-click on valid repeated capability or using Right-click context menu
Compose will bring up the table where you can compose the RepCaps string.

● 11 - Input value: Input value for Write operations. Type of the control depends on
attribute Data type. If range checking is defined to the selected attribute, you can
see the allowed range in its label. In case of Read operation this value is disabled
and ignored. For data type Enum listbox item names depend on settings defined in
7e - Enum Embedding.

● 12 - Attribute ID: Selected attribute value indicator.

● 13 - SCPI Command indicator: This indicator is showing a command that with the
current settings will be sent to the instrument. Black text is fixed content, light blue
text shows Repeated capabilities portions, red text shows Repeated capabilities
portions when the RepCaps string is not valid. Purple portions are the parameters.
In case of the Read operation, parameter is the questionmark.

● 14 - OK button: This button finishes the configuration and the Express VI instance
is modified according the settings. In case of configuration error or conflict, OK but-
ton is disabled. Hovering over it with the mouse will bring up the error description
text.

● 15 - Cancel button: Discards all the configuration changes and closes the configu-
ration panel.

Express VI Configuration panel

Driver Express VI

27Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

● 16 - Help button: Opens the rsspecan_attr.chm file page with the current
attribute. Optionally, you can have this automatically done with every change of
attribute by checking Auto Help update checkbox.

5.3.1 8 - Attribute operation control

Attribute operation defines what is to be done with the selected attribute. In principle,
there are only 2 options: Read or Write. Other operations are derived from those two.
Attribute operation also affects the Express VI instance icon. Note for Express VI icon:
By default, all Hi-level functions in the driver have the icon of Standard Write without
the blue arrow.

Common features of Express VI icon: Standard operations have a blue strip on Icon
top, Fast operations have red/orange strips. A small pink arrow on the left signals that
you can connect the Direct cmd in string that will be placed before composed string:

Fig. 5-7: Standard Write and Fast Write icons.

If Error Checking is ON, icon has a bubble with 'E?' in left bottom corner. *OPC? syn-
chronisation is shown as a small red vertical strip on the right edge. *WAI synchronisa-
tion is signaled as a longer blue vertical strip on the right edge:

Fig. 5-8: Fast Write icons: with Error Checking / with OPC? synchronisation / with *WAI synchronisa-
tion.

Listed below are all possible attribute operations with their icons. Stated in brackets are
the names of Operation variable used in VI Title composing (see chapter 5.3.2.1, "7a -
Title composer tab", on page 28) :

● Read (Get) - Standard driver read method. All Read functions in driver are pro-
grammed using this operation.

Fig. 5-9: Standard Read Icon

Express VI Configuration panel

Driver Express VI

28Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

● Write (Set) - Standard driver write method. All write functions in driver are pro-
grammed using this operation.

● Fast Read (GetFast) - Fast read operation, command is prepared during configura-
tion. Run-time action is limited to writing prepared string to instrument, reading the
response from instrument and converting the response to defined attribute type.
You can use Error Checking with this operation.

● Fast Write (SetFast/SetFix) with Send To Instrument checked. Fast write opera-
tion to the instrument. If you don't need to change the attribute input parameter dur-
ing run-time, check Fixed input parameter checkbox. Available post-operations:
*WAI, OPC? and Error Checking.

● Fast Compose (BuildFast/BuildFix) with Send To Instrument unchecked. This
operation doesn't communicate with the instrument. It only composes the com-
mand and returns composed string in Direct cmd out, which can be connected to
the next Express VI instance Direct cmd in input. This way you can compose the
list of parameters which will then be sent to the instrument all at once. If you don't
need to change the attribute input parameter during run-time, check Fixed input
parameter checkbox. Available post-operations: *WAI.

5.3.2 7a .. 7f tab control tabs

5.3.2.1 7a - Title composer tab

This tab defines the composer string based on which the result Express VI instance
title will be composed. This composer string is unique for every Express VI instance. It
is a multi-line string that contains fixed portions, variables (e.g. <DescriptiveName>)
and formatting pair-tags (e.g. BoldText). You can double-click on this control

Express VI Configuration panel

Driver Express VI

29Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

to use the composer window or modify it directly. VI title preview shows how the result
VI title will look like for the current configuration. You can also change the Background
color of the title - this is useful to e.g. distinguish between the different instruments by
setting a unique title background color. Limiting the title width prevents the long
description names causing the big horizontal space taken by the Express VI instance
on the Block Diagram. You also have a possibility to change the default title position.
Below is the list of available variables and formatting pair-tags:

Table 5-1: Title compose string variables

Variable Name (case sensitive) Description

DescriptiveName Descriptive name of attribute e.g. Averaging State

Identifier Whole Attribute identifier e.g. RSSPE-
CAN_ATTR_AVG_STATE

IdentifierNoPrefix Attribute identifier without <driver_name>_ATTR
e.g. AVG_STATE

Operation Attribute operation: Get / Set / GetFast / SetFast /
BuildFast / SetFix / BuildFix. Refer to chap-
ter 5.3.1, "8 - Attribute operation control",
on page 27.

DataType Attribute data type: I32 / Double / Boolean /
String / Enum / <none>. If there is a range defined
for this value, you see <R> at the end. Enum types
have number of items shown at the end (e.g. #6) To
obtain raw data type (e.g. Double) use DataTy-
peRaw)

DataTypeRaw Attribute data type: I32 / Double / Boolean /
String / Enum / <none>

Value Exact command parameter value that is sent to the
instrument e.g. 110000000.000000000000

ValueHRform Command value that is sent to the instrument but in
shortened form e.g. 110M

ValueHRform3 In case of the Fixed input parameter the value is
equal to <ValueHRform> , otherwise it shows the
input data type e.g. <Double>. For Reading opera-
tions the value is empty string

ValueIFfixed Same as Value, if it cannot be changed during run-
time (checkbox Fixed Input Parameter is checked).
Otherwise empty string

RepCap Repeated capabilities string e.g. TR1

(RepCapNE) Repeated capabilities string if it's non-empty. Other-
wise empty string

RawCmd Command directly taken from Attribute definition
e.g. CALC:MARK{Marker}

ResultCmdNoParam Result command that is sent to the instrument with-
out parameter e.g. CALC:MARK1

ResultCmd Result command that is sent to the instrument
including the parameter e.g. CALC:MARK1 OFF

Express VI Configuration panel

Driver Express VI

30Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

ReadWrite Read / Write access: R / W / R/W

Sync Depending on *WAI and OPC? sychronisation
check boxes, this variable can have values
'<empty>', '*WAI', '*OPC?', '*WAI;*OPC?'

Table 5-2: Title compose string formatting tags

Tag name (case sensitive) Description

Pair tags , <i> Bold and italic text e.g.This is bold <i>plus
italic text</i> and this is normal text

Pair tags for colors <red>, <blue>, <green>, <yel-
low>, <pink>, <purple>, <orange>, <white>

Applies a color to a text between tags

5.3.2.2 7b - Find tab

Fig. 5-10: Attributes Find tab.

Find tab allows you to find an attribute based on Find Specification control. Search-
ing of the next item fulfilling the criteria can be done with Find Next button or F3, or
ENTER button when focused on one of the string fields. You can see all positive
search results in Select Attribute control when checking 5 - Find All checkbox (fig-
ure 5-6). Use the shortcuts e.g. CTRL+G, CTRL+H, CTRL+F,to quickly focus on the
string fields.

String fields Descriptive Name, Attribute ID, and <Variable field> (depending on
Select Attribute columns) allow for full text searching in attribute fields. All non-empty

Express VI Configuration panel

Driver Express VI

31Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

strings must fulfill the attribute specification, otherwise they will not be positively
matched.

The text field SCPI command uses a special search method that is the same as in
Quick Drop SCPI command searcher plugin to ensure the best results when search-
ing for a SCPI command.

If Case Sensitive checkbox is checked, all non-empty strings (except SCPI com-
mand) are evaluated with case sensitivity.

If Regular Expr checkbox is checked, all non-empty strings (except SCPI command)
are considered LabVIEW regular expressions.

Data type checkbox switches search based on attribute value data type. Multiple items
selection is possible with CTRL or SHIFT.

3-state checkbox RepCaps - search based on the attribute property Repeated Capa-
bilities. If checked, only the attributes with at least one RepCap defined are shown.

3-state checkbox Range Check - search based on the attribute property of value
range checking. If checked, only the attributes that have a defined range for their value
will be shown.

3-state checkbox Hi-Level Fncs - search based on the usage of attribute in a Hi-level
function. If checked, only the attributes that are used in at least one Hi-level function
will be shown.

3-state check boxes Write Access / Read Access - search based on attribute prop-
erty of access. If checked, only the attributes which are writable / readable will be
shown.

3-state checkbox Write Callback / Read Callback - search based on attribute prop-
erty of special function for writing or reading. Some attributes cannot use standard
value data types of I32 / Double / Boolean / String, therefore they need special function
- called Callback. As a consequence, Fast Write/Read operations cannot be used
with such attributes. If this checkbox is checked, only the attributes for which Write/
Read callback is defined will be shown.

5.3.2.3 7c - Filter tab

Filter tab allows to only see the attributes in Select Attribute control that fulfill the Filter
Specification. Main filter switch is the control 4 - Filter (figure 5-6). It will be automati-
cally checked on when the Filter Specification changes from its default value. Filter
specification control is the same as in 7b - Find Tab.

5.3.2.4 7d - Main Nodes tab

By selecting only a portion of Main Nodes you can select only branches of Attributes
tree that are of interest to you. Selecting a portion of the main nodes automatically
checks the 4 - Filter on. By default, all Main Nodes are selected. Multiple items selec-
tion is possible with CTRL or SHIFT.

Express VI Configuration panel

Driver Express VI

32Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

5.3.2.5 7e - Embedding tab

This tab contains the setting for Express VI instance embedment into the Parent VI.

Fig. 5-11: Embedding settings tab.

Embedding settings explanation:

Variable RepCaps: If checked, you can choose 1 or more Repeated capabilities (e.g.
Trace, Marker etc.) to be variable during the run-time. RepCaps string in this case
must contain a valid Repeated capabilities string (even for standard Read/Write opera-
tions) which will be taken as a default value. Express VI instance will contain additional
Ring input(s) for Repeated Capabilities with default values taken from RepCaps string.

View VI as Icon: With this setting you can define whether to embed the Express VI
instance as an icon. This checkbox is a 3-state control, therefore you can also define
not to change the previous settings.

Variable RepCap Terminal on VI Top: With this checkbox you can define whether to
connect variable RepCaps terminals on Express VI instance connector top, or bottom.

Variable RepCap Rings with Dig Display: Sets the visible Digital Displays on varia-
ble RepCaps Ring controls.

Conditional Terminal: The input Perform (T) will be available allowing for conditional
execution of the Express VI instance. If you wire False to this input, Direct cmd out will
be equal to Direct cmd in.

Express VI Configuration panel

Driver Express VI

33Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Connect Attribute ID terminal: This setting has only effect for Standard Read/Write
operations. For Fast Read/Write operations the Attribute ID terminal is never connec-
ted, because it cannot be changed during the run-time.

Always connect Direct cmd out: If you chose the Attribute operation that sends the
data to instrument (command or query), you can still access the command through this
terminal by checking this checkbox (e.g. if you want to log the communication with your
instrument).

Use buffered instr. handle: Check this only if you are using one instrument. With
every use of the Express VI the instrument handle is stored in its internal buffer. All the
subsequent Express VIs that have this checkbox set will not have the input instrument
handle available and will use the buffered instrument handle. The instrument handle
out is always valid.

Input Value Terminal Placement: You can decide where can the input value terminal
be placed. The default is Left.

Input Value Terminal Label: This string control can use the same variables as Title
compose string (table 5-1) without rich-text capabilities. Double click to compose the
settings. The result name will be used as a label for variable input value terminal.

Output Value Terminal Label: This string control can use the same variables as Title
compose string (table 5-1) without rich-text capabilities. Double click to compose the
settings. The result name will be used as a label for output value terminal.

Enum Embedding - Terminal Type: You can decide how to embed Enum Data types:
as I32 number, I32 Ring or Enum terminal. This settings is common for input and out-
put value terminals.

Enum Embedding - Show RSxxx_VAL_ prefix: If you use embedding of Enum Data
Types as I32 Ring or Enum, you can decide whether to have item names with
RSxxx_VAL_ prefixes. Sometimes the names are too long, so cutting this part out
makes the items more compact.

Enum Embedding - Show numeric value: If checked, the item names start with their
integer value in round brackets.

Enum Embedding - Show SCPI parameter: If checked, the item names end with
actual SCPI parameter in square brackets. Changing Show RSxxx_VAL_ prefix,
Show numeric value or Show SCPI parameter when you have the attribute with
Enum Data Type selected will immediately alter 11 - Input Value Ring items. This way
you can see how item names will look in your code.

As an embedding example, open the attached file
LabVIEW_programs\Example_EmbeddingSetTrace.vi. It shows the Express VI
instance with the attribute RSSPECAN_ATTR_TRACE_TYPE and the following Embed-
ding options:

Control Name Value

Variable RepCap True

RepCaps string TR4

View VI as Icon True

Express VI Configuration panel

Driver Express VI

34Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Variable RepCap Terminal on VI top True

Variable RepCap Rings with Dig Display True

Conditional Terminal False

Input Value Terminal Label <Descriptive Name> (<ValueHRform>)

Enum Embedding - Terminal Type Ring

Enum Embedding - Show RSxxx_VAL_ prefix False

Enum Embedding - Show SCPI parameter True

Fig. 5-12: Example of an Embedded Express VI instance.

Open the context help (CTRL+H) and hover the mouse over the Express VI to see its
configuration and short help for the selected attribute:

Express VI Configuration panel

Driver Express VI

35Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 5-13: Configuration of the Express VI displayed in Context Help window.

5.3.2.6 7f - About

This tab shows the Express VI version info and the contact information.

5.3.2.7 7g - Hi-Level Functions

If the actual attribute is used in a Hi-level function(s), these will be displayed here. For
example the attribute RSSPECAN_ATTR_MARKER_POSITION is used in the follow-
ing three Hi-level Functions:

Express VI Configuration panel

Driver Express VI

36Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 5-14: Example of the attribute RSSPECAN_ATTR_MARKER_POSITION associated Hi-Level func-
tions.

Right-click context menu allows for:

● Copying the VI to the clipboard
● Placing the VI to the Parent VI
● Copying the VI path to the Clipboard
● Opening the folder in the File Explorer
● Showing the Hi-level function help
● Switching to other attributes that are used in this Hi-level function

5.3.2.8 7h - Info

The various information about the selected attribute. An example for RSSPE-
CAN_ATTR_MARKER_POSITION:

Attribute name: "Marker Amplitude"
Attribute path: "Marker\Marker Amplitude"
Data type: Double
Access: Read / Write
Attribute ID: "RSSPECAN_ATTR_MARKER_AMPLITUDE"
SCPI command: "CALC:MARK{Marker}:Y"
SCPI command from help: "CALCulate<1|2>:MARKer<1 to 4>:Y"
Supported Instruments: ""
Repeated Capabilities: "Marker"

Express VI Configuration panel

Driver Express VI

37Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

"Marker"(DefIx 0): "M1"(1), "M2"(2), "M3"(3), "M4"(4), "M5"(5),
"M6"(6), "M7"(7), "M8"(8), "M9"(9), "M10"(10), "M11"(11),
"M12"(12), "M13"(13), "M14"(14), "M15"(15), "M16"(16)
Hi-level function names: "Query Marker.vi"

5.4 Example of LabVIEW Express VI code

Attached file: LabVIEW_programs\Example_Express.vi
This code opens the VISA session to the analyzer, configures the analyzer to single
sweep with 10 maxhold and minhold sweeps (you can add more traces). Then, it reads
X and Y traces and displays them in XY graph. Notice the different approaches of com-
munication with the instrument:

Building the SCPI command string with several Fast Compose (BuildFast / BuildFix)
operations and at the end use Fast Write (SetFast) operation. As a result, only the last
VI communicates with the instrument. This is the fastest way how to set up you instru-
ment. The SCPI command string that has been built and sent is shown in the string
control Direct cmd out 1. In our case the SCPI string is
SYST:DISP:UPD OFF;:INIT:CONT OFF;:SENS:SWE:COUN 3;*WAI

Fig. 5-15: SCPI command string building with two Fast Compose operations, and one Fast Write
operation at the end.

Sending the commands with the driver standard Write (Set) operation. Commands are
sent directly and Error Checking is performed after every operation. There is no differ-
ence between standard Write operation Express VIs and using the driver VIs, because
the entire driver is programmed with Express VIs configured to standard Write or
standard Read operations.

Example of LabVIEW Express VI code

Driver Express VI

38Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 5-16: Standard Write VIs that you can find in all driver functions.

Similarly to the previous part SCPI command string is built by using Fast Compose
(BuildFast/BuildFix), and the end using Fast Read (GetFast) to retrieve a response
from the instrument. As you can see SCPI command string can be built by using differ-
ent methods, in our case with shift register over the for loop creating settings for multi-
ple traces. Compared to sending separate command for every attribute this approach
takes only a fraction of that time. In this example, the last Express VI sending SCPI
command string also checks for instrument errors. This way you can isolate groups of
SCPI commands that have caused an error. The following string (also available in
Direct cmd out 2) is sent to the instrument:
DISP:WIND:TRAC1:MODE MAXH;:DISP:WIND:TRAC2:MODE MINH;:SENS:FREQ:
CENT 254000000.000000000000;:SENS:FREQ:CENT:STEP:LINK RBW;:SENS:
FREQ:SPAN 12000000.000000000000;:SENS:FREQ:CENT:STEP:LINK?

Fig. 5-17: SCPI command string building with several Fast Compose operations, and one Fast Read
operation at the end, together with Error Checking.

Example of LabVIEW Express VI code

Performance comparison

39Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

6 Performance comparison
Attached files:

● LabVIEW_programs\Performance_comparison_Standard_Fast_Raw.vi
● Scripts\Spyder_PlainVISA_WriteRead.py
● VS_programs\PlainVISA_WriteRead\PlainVISA_WriteRead.sln
This chapter contains comparison of performances achieved by using different
approaches in LabVIEW and in other programming environments. The following test
steps were evaluated:

● *IDN? loop time measurement - 10000 cycles of sending *IDN? query and read-
ing the response from instrument. This task is not performed when using the Lab-
VIEW driver, since this feature is not available.

● Configuration time measurement - setting 8 different parameters to the instru-
ment.

● Measurement - 10000 cycles of triggering the short sweep (50µs) in zero span,
waiting for the sweep to finish, reading the RMS marker, reading marker X and Y
coordinates.

All used programs and scripts are available in attachment of this Application Note. All
measurements are performed using VXI-11 and HiSLIP protocols. The following
approaches were chosen for comparison:

● LabVIEW driver Standard configuration and measurement functions.
● LabVIEW driver Express VIs configured to Standard operations.
● LabVIEW driver Express VIs configured to Fast operations.
● LabVIEW raw VISA write/read.
● Visual Studio 2012 project in C# with visa32.dll.
● Spyder Python script with raw VISA communication using PyVisa component.

Test setup:

● Dell Optiplex 7010, I7-3770 3.40GHz, OS Win7 64-bit, 16GB RAM
● Network adapter: Intel PRO/100Mbit , LAN switch 100MBit
● Instrument: Rohde & Schwarz FSW26, firmware 2.00
● LabVIEW 2010 32-bit
● LabVIEW driver rsspecan 3.1.0, 07/2014
● Visual Studio Professional 2012 Version 11.0.51106.01 Update 1, .NET framework

4.5.50709
● Spyder 2.2.5 with Python 2.7.6 32-bit

Performance comparison

40Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

6.1 Results using VXI-11 protocol
Table 6-1: Result table for VXI-11 protocol. EC OFF means that Error Checking was switched OFF.

*IDN? loop time in sec-
onds

Configuration time in
seconds

Measurement time in
seconds

LabVIEW driver Stand-
ard configuration

N.A. 0.07

0.04 (EC OFF)

64.07

45.22 (EC OFF)

LabVIEW driver
Express VIs Standard
operations

N.A. 0.04

0.03 (EC OFF)

49.73

30.21 (EC OFF)

LabVIEW driver
Express VIs Fast oper-
ations

N.A. 0.03 24.97

LabVIEW raw VISA
write/read

9.59 0.04 24.26

Visual Studio 2012 C# 9.26 0.03 23.51

Spyder Python with
PyVISA

10.51 0.04 27.04

Below, the last column Measurement time in seconds represented in graph, sorted
by speed from the slowest to the fastest:

Fig. 6-1: VXI-11 duration time results of the Measurement task.

Results using VXI-11 protocol

Performance comparison

41Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

6.2 Results using HiSLIP protocol
Table 6-2: Result table for HiSLIP protocol. EC OFF means that Error Checking was switched OFF.

*IDN? loop time in sec-
onds

Configuration time in
seconds

Measurement time in
seconds

LabVIEW driver Stand-
ard configuration

N.A. 0.07

0.06 (EC OFF)

41.27

31.65 (EC OFF)

LabVIEW driver
Express VIs Standard
operations

N.A. 0.03

0.03 (EC OFF)

31.47

21.44 (EC OFF)

LabVIEW driver
Express VIs Fast oper-
ations

N.A. 0.03 20.92

LabVIEW raw VISA
write/read

2.03 0.03 20.75

Visual Studio 2012 C# 2.03 0.02 20.45

Spyder Python with
PyVISA

2.48 0.07 22.62

Below, the last column Measurement time in seconds represented in graph, sorted
by speed from the slowest to the fastest:

Fig. 6-2: HiSLIP duration time results of Measurement task.

Results using HiSLIP protocol

Performance comparison

42Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

6.3 Conclusion

When using the LabVIEW driver, switching OFF the Error Checking can significantly
reduce the measurement time (over 30% in VXI-11, over 20% in HiSLIP in our mea-
surement task). The absolute time spent on one error checking task is in our setup cca.
1.9ms (VXI-11) resp. 1ms (HiSLIP). The downside of Error Checking switched OFF is,
that you cannot react on an error occurred in the instrument which can lead to although
fast, but inaccurate or invalid measurement results. The best approach is to do the
'Smart' Error Checking:

● Keep Error Checking ON for sections of your program that are not performed in
multiple loops.

● Keep Error Checking ON for multiple measurement loops where the instrument
measurement times are relatively long (long sweep times, averaging results, etc.).
The longer measurement time you have, the less significant is the Error Checking
time. By sweep times in range of seconds the Error Checking time is negligible.

● Switch Error Checking OFF for critical portions of your measurement with multiple
loops, do the error check before and right after them.

The difference between the LabVIEW driver Standard configuration (1st column)
and LabVIEW driver Express VIs standard operations (2nd column) is caused by
Initiate.vi which is doing additional operations besides sending INIT;*WAI SCPI
command string (clearing the instrument error queue, temporarily changing the session
based measurement timeout). When you use Express VI with RSSPECAN_ATTR_INIT
instead, you will achieve the same measurement times in both cases.

In HiSLIP LabVIEW driver Express VIs Standard operations with Error Checking
OFF are only cca. 5% slower than Visual Studio 2012 C#. In VXI-11 this difference
grows to cca. 28%.

It is safe to say that when it comes to communicating with instruments over VISA, Lab-
VIEW in raw write/read mode is as fast as other programming languages. When using
the Rohde & Schwarz LabVIEW drivers, Express VI with Fast Operations can bring
the performance very close to raw write/read mode.

Of course the communication with instruments is only one part of measurement appli-
cation, comparing the overall performance including user interfaces, graph and data
handling is the topic beyond the scope of this Application Note. It is also fair to men-
tion, that the performance comparison was done on relatively powerful PC. The results
can differ depending on the used computer. Therefore we encourage the user to do the
comparisons on his setup using attached programs and scripts.

Conclusion

Tips and Tricks

43Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

7 Tips and Tricks

7.1 Building Executables

All Rohde & Schwarz attribute-based drivers use standard functions for writing/reading
the following attribute data types: I32, Double, String, Boolean, Enum (treated inter-
nally as I32). In case that attribute parameter cannot be formatted using these stand-
ard types, the drivers use functions called Callbacks. Usually, a pair of Callbacks is
defined for both writing and reading operations. All of these callbacks are stored in the
driver structure Private\callbacks folder. When running in development environ-
ment, the driver dynamically calls the Callback if an attribute requires it. But if you cre-
ate an executable with your Top-level VI, none of the Callbacks are in its dependency
list, therefore they will not be included into your executable application. As a conse-
quence, if you run your executable, the first use of attribute requiring a Callback will
report the error -1074003958 (0xBFFC000A) with following text: Cannot find
dynamically called callback '<callback_name>'. Make sure that
all VIs are in correct folders. If deploying, folder structure
has to be maintained!
To solve this error, go to your Project Explorer window Build Specifications and open
your desired application (in our case MyApplication) Properties window:

Building Executables

Tips and Tricks

44Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 7-1: Building an executable requires adding entire callbacks folder to Always Included set of VIs
or folders.

Select Source Files, in Project Files open
Rohde&Schwarz Spectrum Analyzer.lvlib element and navigate to
Private\callbacks folder. Add the entire folder to Always Included group.

In order to see the Rohde&Schwarz Spectrum Analyzer.lvlib in Project Files,
you need to have it added to MyApplication.lvproj. If your instrument driver is
not project-based, add its _utility\callbacks folder to MyApplication.lvproj
in order to access it.

If you are using more than one driver, you will need to repeat this procedure for each of
them.

7.2 Synchronization methods

Synchronization of your application and your measurement instruments is a crucial part
of every automated measurement task. Programmer always has to know in which state
his instrument is when he applies a stimulus or reads the measurement results. Using

Synchronization methods

Tips and Tricks

45Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

instrument locally and observing measurement results visually is in this aspect very dif-
ferent from operating it remotely. While in local operation user's eye serves as a flag to
distinguish between already valid result and measurement still in progress, remote
control application must rely on instrument's build-in synchronization mechanisms.
Although the measurement synchronisation is mostly related to analyzer-class instru-
ments (spectrum analyzers, oscilloscopes, audio analyzers, multimeters), the same
principles can be used also for other instrument types.

Keep in mind, that in order for synchronization to be working properly your
instrument must be in single sweep / single measurement mode. Below, there are
three basic synchronization methods you can use with Rohde & Schwarz instruments.

7.2.1 *WAI command

Attached example: LabVIEW_programs\Example_synchronization_WAI.vi
Sending *WAI command makes your instrument (not your application !!!) to wait until
all previous pending commands are completed. This method doesn't synchronize
instrument with your application, it just tells the instrument that you want it to finish all
the previously received commands before processing further ones. Example of use:
Send the following string to you spectrum analyzer (1st part of attached example):
SYST:DISP:UPD OFF;:INIT:CONT OFF;:SENS:SWE:TIME 3.000000000000;:
SENS:SWE:COUN 1;*WAI;:INIT;*WAI;:CALC:MARK1:MAX;:CALC:MARK1:Y?
Notice that you can send the entire SCPI string together and because of *WAI com-
mand the instrument will do exactly what you expect: Set up, wait, one sweep, wait for
it to finish, set the marker to max and return you the amplitude. *WAI assures that you
get the marker value only when the sweep is finished and you're not getting an invalid
result or a result from previous sweep. This process also makes your application wait
in VISA Read.vi and therefore continue only when the measurement was finished. If
you want your application to perform other tasks while the sweep is running, you have
to send the same SCPI command string without the query at the end and only later
query the marker amplitude (2nd part attached example) In this case your application
meantime operation must be shorter than the duration of the sweep, otherwise your
analyzer waits idle. Not to lose time and find out whether measurement result is
already available, you have to use *OPC/STB poll synchronization method.

7.2.2 *OPC? query

Attached example:
LabVIEW_programs\Example_synchronization_OPCquery.vi
Querying (write + read) *OPC? makes your application to wait until the instrument
responds with '1' (or '0' if error occurred) after all previous operations were finished.
Attached example shows the same task as in case of *WAI but using the *OPC? query.
You need to set the VISA timeout parameter to higher value than the duration of your
measurement.

Synchronization methods

Tips and Tricks

46Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

7.2.3 *OPC/STB poll

Attached example:
LabVIEW_programs\Example_synchronization_OPC&STBpoll.vi
Instrument's Event status register (ESR) provides an event-like (reading the value
clears it) information about the instrument status. Its bit 0 (Operation Complete) is set
to 1 when all the previous operations have finished. If you set the Event status enable
register (ESE) bit 0 to True, Operation Complete event will be reported in the Status
register (STB) bit 5-ESB (see the figure below). The driver sets the ESE bit 0 to True in
Intialize.vi.

Fig. 7-2: Instrument status reporting system showing ESR, ESE and STB registers.

Sending *OPC at the end of the command makes the instrument generating the Opera-
tion Complete event in ESR after all pending commands have been processed. The
occurrence of this event can be then read from STB register bit 5-ESB. The reason for
reading the STB register instead of direct reading of the ESR register bit 0 is, that VISA
provides viReadSTB function which doesn't query the instrument at all (as opposed to
*ESR? or *STB? queries), but only reads the session internal STB register on the con-
troller (PC). The STB content synchronization between the controller and the instru-
ment is handled by the instrument session automatically, and therefore it optimizes the
traffic and the speed on the controller-instrument interface.

The advantage compared to *OPC? synchronization method is, that your application
can perform other operations while waiting for the instrument to report the operation
complete. This method of synchronization is used internally by the driver in function
Wait For OPC.vi. As shown in the example, you need to use the timeout different
from VISA timeout to prevent a dead-lock. The Express VI doesn't provide this syn-
chronization option.

Synchronization methods

Tips and Tricks

47Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

7.3 Tips when using drivers

In this chapter you will find useful tips when working with Rohde & Schwarz drivers.

7.3.1 Use Quick Drop plugin SCPI command searcher

SCPI command searcher provides a full integration of SCPI-custom searching proce-
dure for an attribute, function with the certain SCPI command and direct Drag & Drop
to your Block Diagram. Refer to chapter 4.1, "SCPI command searcher plugin",
on page 15 for more details.

7.3.2 Use Quick Drop plugin Connect and Align

This plugin will automate your Block Diagram editing by connecting and aligning termi-
nals and nodes together. Refer to chapter 4.2, "Connect and Align plugin", on page 16
for more details.

7.3.3 Mass-compile your driver before the use

Rohde & Schwarz drivers are compiled in LabVIEW 2010 32-bit. If you use higher ver-
sion of LabVIEW, it is the best to perform Mass Compile of the entire driver folder
before using it. Mass compiling of a big driver like rsspecan can take some time, but
you only need to do it once.

After copying instr.lib and user.lib driver folders to your LabVIEW folders, start
LabVIEW, go to menu Tools -> Advanced -> Mass Compile, in Directory to compile
navigate to instr.lib\Rohde&Schwarz Spectrum Analyzer and press Mass
Compile button.

Tips when using drivers

Tips and Tricks

48Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

Fig. 7-3: LabVIEW Mass Compilation of the driver instr.lib folder.

LabVIEW will compile all VIs in the selected folder and all sub-folders to the actual ver-
sion. It also compiles all VIs in llb libraries.

All the new drivers released later than 12.2014 have the automatic mass-compilation of
the user.lib folder. If your driver is of older date, repeat the same procedure for the
folder user.lib_express\rsspecan. This is especially significant for Express VI
Configuration panels, because LabVIEW will never do it automatically and that leads to
a silent compilation of this code every time you configure you Express VIs.

7.3.4 Use Express VI variable RepCaps settings

Instead of composing Express VI Repeated Capabilities input string yourself, use the
Variable RepCaps setting in the Express VI configuration window. The variable Rep-
Caps work up to 6 RepCaps. The position of the terminal on the VI pattern can be also
selected:

Tips when using drivers

Tips and Tricks

49Application Note Instrument Drivers LabVIEW ─ 1MA228_4e

7.3.5 Use color-differentiation and conditional terminals

Attached file:
LabVIEW_programs\Example_DifferentColorsForLabelsCondTerm.vi
If your test setup uses more than one instrument, differentiate between them with dif-
ferent colors e.g. label colors of Express VIs. This way you can quickly find which
building block communicates with which instrument. Instead of Case Structures use
Conditional terminals. Example of the code using FSW and SMW, two Express VIs are
configured not to send the commands when input values are NaN:

Fig. 7-4: Differentiation between different instruments by selecting different caption background col-
ors. With Conditional terminals you can avoid using Case Structures.

7.3.6 Analyzer should always be in Single Sweep mode

Always keep your analyzer-class device in single-sweep mode. For that, in the rsspe-
can driver use the attribute RSSPECAN_ATTR_SWEEP_MODE_CONTINUOUS, or Hi-level
function Configure Acquisition.vi.

7.3.7 Initialize and Continue measurement

Starting the measurement on spectrum analyzer is performed with the attribute
RSSPECAN_ATTR_INIT, or Hi-level function Initiate.vi. If you don't want to clear
the previous Average/MaxHold/MinHold results, use the attribute
RSSPECAN_ATTR_INIT_CONMEAS or Continue.vi. Both Initiate.vi and
Continue.vi send *WAI at the end, which assure that if you send any query immedi-
ately after them, the query will be processed only when the measurement sweep is fin-
ished. Therefore your query will return a result from the last sweep.

7.3.8 Preventing measurement Timeouts

Synchronization method used by the Rohde & Schwarz drivers is *OPC/STB poll.
Therefore changing VISA Timeout parameter will not help avoiding timeouts for long
measurements. Use Utility VIs to set/get the STB poll timeout value (chapter 3.1.1.6,
"Get Timeout.vi / Set Timeout.vi", on page 13).

Tips when using drivers

Tips and Tricks

7.3.9 Reading and Fetching measurement results

Vis that have Read in their names start a new measurement and then read the results.
If you don't want to start a new measurement, use Fetch VIs. They only read the val-
ues obtained by the last measurement.

Tips when using drivers

8 Additional Information
Please send your comments and suggestions regarding this Application Note or Attrib-
ute Express VI to:

TM-Applications@rohde-schwarz.com

Using tag “[1MA228]” in the mail subject will help us to quickly identify the topic and
speed up the response process.

9 Rohde & Schwarz
Rohde & Schwarz is an independent group of companies specializing in electronics. It
is a leading supplier of solutions in the fields of test and measurement, broadcasting,
radiomonitoring and radiolocation, as well as secure communications. Established
more than 80 years ago, Rohde & Schwarz has a global presence and a dedicated
service network in over 70 countries. Company headquarters are in Munich, Germany.

Sustainable product design

● Environmental compatibility and eco-footprint
● Energy efficiency and low emissions
● Longevity and optimized total cost of ownership

Certified Quality Management

ISO 9001
Certified Environmental Management

ISO 14001

	Contents
	1 Introduction
	1.1 Required Software
	1.2 Related Documents

	2 About LabVIEW drivers
	2.1 LabVIEW driver types
	2.1.1 Non-attribute based driver
	2.1.2 DLL-wrapper around the VXI plug&play driver
	2.1.3 Attribute-based driver
	2.1.3.1 Repeated Capabilities in Attribute-based drivers

	3 Getting started with using attribute-based drivers
	3.1 Driver structure
	3.1.1 Utility folder functions
	3.1.1.1 Error Message.vi
	3.1.1.2 Instrument Status Checking.vi
	3.1.1.3 Option Checking.vi
	3.1.1.4 Configure Error Checking.vi
	3.1.1.5 _check_error.vi
	3.1.1.6 Get Timeout.vi / Set Timeout.vi
	3.1.1.7 Revision Query.vi
	3.1.1.8 Reset.vi
	3.1.1.9 Instrument IO folder

	4 Quick Drop Plugins
	4.1 SCPI command searcher plugin
	4.2 Connect and Align plugin

	5 Driver Express VI
	5.1 General principle of LabVIEW Express VI
	5.2 Express VI in drivers
	5.3 Express VI Configuration panel
	5.3.1 8 - Attribute operation control
	5.3.2 7a .. 7f tab control tabs
	5.3.2.1 7a - Title composer tab
	5.3.2.2 7b - Find tab
	5.3.2.3 7c - Filter tab
	5.3.2.4 7d - Main Nodes tab
	5.3.2.5 7e - Embedding tab
	5.3.2.6 7f - About
	5.3.2.7 7g - Hi-Level Functions
	5.3.2.8 7h - Info

	5.4 Example of LabVIEW Express VI code

	6 Performance comparison
	6.1 Results using VXI-11 protocol
	6.2 Results using HiSLIP protocol
	6.3 Conclusion

	7 Tips and Tricks
	7.1 Building Executables
	7.2 Synchronization methods
	7.2.1 *WAI command
	7.2.2 *OPC? query
	7.2.3 *OPC/STB poll

	7.3 Tips when using drivers
	7.3.1 Use Quick Drop plugin SCPI command searcher
	7.3.2 Use Quick Drop plugin Connect and Align
	7.3.3 Mass-compile your driver before the use
	7.3.4 Use Express VI variable RepCaps settings
	7.3.5 Use color-differentiation and conditional terminals
	7.3.6 Analyzer should always be in Single Sweep mode
	7.3.7 Initialize and Continue measurement
	7.3.8 Preventing measurement Timeouts
	7.3.9 Reading and Fetching measurement results

	8 Additional Information
	9 Rohde & Schwarz

