🛛 I 🖬	1		(No Project) - PWRVIEW	_ 0 X
- 1 -	Setup	Measure Result	5	^ 😧
Stop Measure	Reset	Significant l Setup Limits	igures: 5 Taging: Auto Zero Blanking: Display Displ	
Measurer	nent Tr	and 1 🕷 Waveform 1	X Harmonic 1 X	
Index	Meas	A PA3000(0006) 1	PA3000(0006) 2 C Formula	
1	Vrms	120.38 V	12.041 V Efficiency	
2	Arms	198.72 mA	999 81 mA 82 409e+00	
3	Watts	14.612 W	all Data Logging	
4	Freq	60.032 Hz		
5	PF	610.82 m	Data Logging Setup	
6	Vdc			
	Adc Mala	120 24 1/		
8	Villin	120.34 V	Logging Duration	
9	Vhip	0.0000 80.004 mV		
10	Vii2iii	105 22 5	Cutil Stopped	
11	vh2p	550 49 mV	C Log Data For (Days.Hours:Minutes:Seconds): 01:00:00 🗘	
12	Vh2n	24 521 1		
14	Vh4m	51.075 mV	Logging Interval	
15	Vh4p	-106.32 '		
16	Vh5m	2.4647 V	As Fast As Possible >= 0.5 Sec	
17	Vh5p	-162.20 '	Log Data Every (Hours:Minutes:Seconds): 00:00:01	
18	Vh6m	45.037 mV		
19	Vh6p	-57.456 °		
20	Vh7m	995.26 mV	OK Cancel	
21	Vh7p	21.159 '		
22	Vh8m	6.2631 mV		
23	Vh8p	-19.175 '		
24	Vh9m	152.80 mV		
25	Vh9p	-78,563 °		
26	Vh10m	15.549 mV		
27	Vh10p	-146.22 °		
28	Vh11m	812.30 mV		
29	Vh11p	-145.97 '		
30	Vh12m	6.7370 mV		
31	Vh12p	-9.2112 '		
32	Vh13m	249.92 mV		
33	Vh13p	-126.76 '		· ·
Measure	ments ru	nning		

图 43: 记录设置

- 若要使用 PWRVIEW 记录数据,请单击菜单栏中的 Record 按钮。软件 将开始记录所选的全部数据,包括公式和极限。
- 若要更改数据记录速率或设置总记录时间,请单击 Record 图标上的 下箭头打开数据记录设置。您可以从中选择所需的记录时长和间隔。
- 若要停止数据记录,请单击 Stop 按钮。
- 记录的所有数据均存储在本地计算机上的数据库中。若要访问这些数据,请单击 Results 选项卡,然后单击测量图标。对话框将显示所有存档数据。
- 选择所需的数据集,然后导出为 Excel 或 .csv 格式。

自定义极限:还可通过任何测量参数设置自定义极限。自定义极限帮助根据各种标准或测试规范设置极限。

2 H	11					LEC	Driver Effici	incy spin -	PWRVE	W					(x
	Setup	Meas	ure Result														~ 0
0	6	-	Significant I	Figures:	5	•		Let Har	monics		1						
	9	111	Ave	reging:	Auto		Measure	1 We	veform	40	μ.,	0					
Start	Reset	Setup			Zero Blanking:	v	Emiciency	he Tre	nd	SnapS	hot	Record					
Manager	mente	Limite		Dise			Difficiency	0.0	diam.	Det		mine					
mount		CHERT		Unip			ununity		-	E-01	a coy	19-19		_		_	-
Measurer	nert Ha	emonic 1	X Waveform	1 Ж	Trend 1 M				a Lie	nits Setup						_	× 1
Index	Meas	PA300	A 0(0006) 1	PA3	B 000(0006) 2	E	cornula			Limit Cate	gory:	Channel		1			
1	Ares.		120.15 V		11.969 V	Eff	iciency			-							- 88
2	Ares		206.04 mA		1.0003 A	81.	783e+00		1	Channel							
3	watts		14.639 w		11.972 W	-			1	Instrum		PA3000(0006)		Chary	net Oh1		- 8
-4-	Freq		59.970 Hz												-		- 8
5	PF		591.35 m							On/Off	Me	isurement	Limit Fund	tion	Limit Value		- 8
6	Vdc				11.969 V		-			17	Vnm	6	> Greater				- 18
7	Adc	_			1.0002 A	_										15	
8	VCF		1.3/66	-		-				80	-	0	> Greater			4.2	
9	ACT	-	3.0148							1	Wat	25	> Greater			12	
10	vend Arbd		135 14 5			-				171	Freq	2	> Greater				
12	white.	-	120.09 V	-		-				-	-		- Greener				
11	white.		0.0000 '			-					17		> Greater				
14	102m		87.303 mV			-				10	Vcf		< Less			1.39	
15	Vh2p	-	130.83			-			1	111	Act		- Course	-			- 8
16	Vh3m	1	390.48 mV			-			1	- 60	-		- Greater			_	
17	Vh3p	1	14.893 *			-			1	1	VON	8	< Less	1.1		2	
18	Vh4m		46.822 #V						1	11	Ath	đ	> Greater			_	
19	ship		137.97											-			1.11
20	Wh5m.		2.4007 V														
21	whisp		168.84 '														
22	vh6m		36.949 #V														
23	ship	-	38.043 *														
24	Vb/m	1	877.54 mV			-		_									
25	sh/p		0.9697			-	-										
26	vn8e		24.03/ WV			-		_									
2/	stap		185 71			-		_									- II
28	Lb.Gr		03.083.1			-		_							_		. II
- 10	whites	-1	24 240 atr			-			-						100	Close	1 📗
30	111208					_											1
Ready									-	-	-		-	-	_	_	_

图 44: 自定义极限设置

- 若要设置自定义极限,请右键单击所需的测量参数或单击菜单栏中的 极限设置图标。停止测量更新以设置自定义极限。
- 自定义极限在测量网格上显示为一个单独的选项卡。如果极限失败, 结果列将显示红色字体。将鼠标悬停在结果上将显示极限函数、极限 值和相对值。

示例 2: 效率测试三相应用

电机驱动、风力涡轮机及其他大负载等应用均依靠三相电力输送,从而使 系统更高效、更经济。此示例介绍 PA3000 如何帮助进行三相效率测量。 此示例适用于各种三相 AC-DC 转换器、DC-AC 转换器及 AC-AC 转换器应 用,比如 PWM 电机驱动、三相转换器、三相 UPS 系统以及风力发电。

- **测量挑战** 由于高功率浮动信号以及容易出错的复杂功率计算,三相应用方面的测量 可能非常复杂。理想情况下,三相应与平衡相位对称,但在大多数实际应 用中,由于负载阻抗、电缆及其他系统方面的不一致,总会出现一些不平 衡情况。拥有高度准确隔离的测量,在测量通道之间保持良好的相位精度 和同步,这点非常重要。
- **测量解决方案** 测量三相电源时,有两种主要的接线配置可以使用。双功率表法常用于三 相三线应用,三功率表法常用于三相四线应用。请参阅接线部分,了解有 关所有可用接线配置的详细信息。(见第41页,*接线*)

双功率表法可用于测量使用四条电源测量通道的三相输入和三相输出应用 的效率。三功率表法尤其适合拥有专用零线的应用。以下方法介绍三相电 源测量的不同配置,并展示在三相系统上进行效率测量。

方法 1:三相 PWM 电 机驱动上的效率测量 (直接在 PA3000 上进 行) 此方法展示直接在 PA3000 显示屏上对单相输入和三相输出 PWM 电机驱 动进行三相电源和效率测量。

- 测试设置 以下步骤介绍使用 PA3000 在单相输入 PWM 电机驱动上设置效率测量的 过程。
 - 1. 使用 Tektronix 接线盒 (BB1000) 将 PWM 电机驱动上的单相交流输入 连接到 PA3000 的第一条通道,如接线图中所示。

接线盒接入电流信号并测量输入端子的电压。这可以更加轻松安全地 使用 PA3000 随附的 4 mm 安全导线连接 DUT 上的交流输入信号。

2. 使用三相四线配置将 PWM 驱动的三相输出连接到其他三条通道,如接 线图中所示。

三相均与内部分流器串连,并且测量相应相位和零线之间的电压。

 如果电机驱动没有专用零线,请通过将通道 2、3 和 4 上的所有三个 VL0 端子连接在一起,创建浮动零线。

- 图 45: PWM 电机驱动效率(单相输入和三相输出)
 - 4. 完成所有连接后,将 PA3000 设置为默认配置:
 - a. 按 📃。
 - b. 向下滚动到 User Configuration 并按 **卜**。
 - c. 选择 Load Default Configuration, 然后按✓ 确认。

PA3000 将加载默认设置并显示确认屏幕。按 🛄 ,然后按 🚺 返回 到主菜单。

- 5. 若要在主菜单中选择正确的接线配置,请转至 Inputs → Wiring → Configuration,然后为组 A 选择 1 Phase 2 Wire。
- 6. 按左前面板上的箭头键, 滚动到组 B, 然后选择 3 Phase 4 Wire。

说明: 如果需要,可以为这两个组命名,以便于监测。返回第一步,然 后使用 Group Name 选项输入适当的名称。

7. PA3000 方便轻松使用默认模式配置重要设置。若需要 PWM 电机驱动 输出,请从主菜单选择 Modes → Select Mode → PWM Motor。

PWM 模式会将 PA3000 设置为准确测量在高功率下切换的典型 PWM 驱动的输出电压。该算法采用专有传感方法来实时确定所有电源计算的实际基本电源频率,以此保证计算得出的电源和谐波数据始终准确,即使在动态速度条件下也不例外。

测量输入工频不需要采用 PWM 模式。PWM 模式及其他模式将在"模式"部分介绍。(见第36页,模式)

- 若要为组 B 上的三相输出启用求和测量,请进入主菜单并转至 Measurement Configuration → Sum Results Column → Enabled, 启用求和结果列。
- 9. 若要进行效率测量,请按 ∑,然后按 MATH 软键,启用数学函数。
- 10. 选择所要编辑的函数, 然后按 ▶ 进入选项。

说明:编辑功能可用于编辑任何特定数学公式。在编辑功能下,按 可进入 Help 菜单,获取函数格式方面的帮助或参阅本手册之前提到的信 息。(见第48页,数学结果)

- 12. 返回 Math 菜单,向下滚动到新编辑的函数并通过按 ✓ 选择函数。 选择要在屏幕上显示的所有函数。
- 13. 按 () 查看结果屏幕。
- 14. 若要查看所选的数学公式,请按 ∑。
- 15. 若要查看数学公式及其他结果,请返回结果屏幕,然后多次按 直到屏幕底部显示数学窗口。

您现在可以对使用单相输入和三相输出的 PWM 电机驱动进行效率测量了。

根据需要进行其他设置 扭矩和转速输入: 电机驱动系统的总效率需要测量实时转速和扭矩数据。 PA3000 拥有四个模拟输入和两个计数器输入,支持不同的辅助输入测量, 比如扭矩和转速测量。有关此输入规格的更多信息,可以在本手册的辅助 输入和输出部分找到。(见第134页,*辅助输入/输出*)

- 请参阅辅助输入/输出,了解所需模拟或计数器输入的针脚数,并将信号(扭矩、转速或其他)直接连接到后面板 AUXILIARY INPUTS/OUTPUTS 连接器上的相应针脚。
- 可通过数学屏幕启用和查看辅助输入。

按 ∑,然后按 MATH 软键进入选项。选择所需的任何函数,然后针 对模拟输入将函数编辑为 ANA1、ANA2、ANA3 或 ANA4,针对计数器输 入将函数编辑为 COUNT1 或 COUNT2,以启用辅助输入并在屏幕上查看 它。

 若要查看数学屏幕及其他结果,请多次按 ,直到显示屏底部显示 数学窗口。

波形、谐波和矢量图:可以为所有三相信号启用波形、谐波和矢量图。

图 46: PA3000 上的矢量图

- 若要监测交流波形、谐波或矢量图,请分别使用
 疑。
- 使用前面板上的箭头键在通道间切换。
- 在 Vector 和 Waveforms 菜单中选择用于查看波形和谐波的各个选项。

方法 2:三相 PWM 电 此方法介绍使用 PWRVIEW 软件在三相输入和输出 PWM 电机驱动上进行效 **机驱动上的效率测量** 率测量。 (PWRVIEW 软件)

- **测试设置** 1. 将 PWM 电机驱动的三相交流输入连接到 PA3000 的前两条通道,如接 线图中所示。(见图47)
 - 2. 使用接线图中显示的配置将 PWM 驱动的三相输出连接到其他两条通 道。

说明: 三相三线(双功率表)配置支持使用两条电源通道测试三相信号。 此方法可用于在 4 通道功率分析仪上同时测试三相输入和输出。有关接 线配置的详细信息,请参见本用户手册的接线部分。(见第41页,*接线*)

图 47: PWM 电机驱动效率 (三相输入和三相输出)

- 3. 完成所有电源连接后,使用随附的 USB 电缆将 PA3000 连接到装有 PWRVIEW 软件的计算机。还可根据需要使用以太网或 GPIB
- 4. 双击桌面图标,打开 PWRVIEW 软件。
- 5. 单击 Add 按钮以连接 PA3000。

选择面板中将列出所有可用仪器。选择所需的仪器 (PA3000), 然后单击 Connect。

说明: 左面板上有多种默认应用和合规性测试可供选择。

- 选择左面板上 Applications/Test 部分下的 PWM Motor Drive Efficiency, 然后单击 Wizard 按钮。
 向导帮助您进行接线和分流器选择。
- 7. 在向导中选择三相输入和三相输出,然后在相应的框中输入预期电流。
- 8. 完成后单击 Finish,页面将引导您进入 Efficiency Setup 选项卡。
- 9. 确认仪器和组信息,然后单击 Measurement Efficiency 复选框。 PWRVIEW 现在可以进行效率测量了。
- 10. 转至 Measure 选项卡, 然后单击蓝色 Start 按钮。

测量将开始更新。

11. 若要添加更多测量或更改其他设置,比如量程和滤波器,请转至 Setup 选项卡并选择所需设置。

说明: 需要停止测量才能在 Setup 页面上进行任何更改。通过单击 Setup 页面底部的 Stop 按钮停止测量。

根据需要进行其他设置 扭矩和转速输入: 电机驱动系统的总效率需要测量实时转速和扭矩数据。 PA3000 拥有四个模拟输入和两个计数器输入,支持不同的辅助输入测量, 比如扭矩和转速测量。有关此输入规格的更多信息,可以在本手册的辅助 输入和输出部分找到。(见第134页,*辅助输入/输出*)

2011 III 1991	PWM MOTOR DRIVE EFFICIENCY.upm - PWRVIEW	
Setup Measure Results		~ 6
O All O Text Solutionerst Solutionerst O Text Solutionerst O Text O Text Solutionerst O Text O Text	s Settings	
PA3000(0004) Efficiency Setup		
Applications / Tests	Wiring PWM Motor Drive Input PWM Motor Drive Output Auxiliary Inputs	
Lichner Input Output Ballat Prut Output Biffeency PMM Modo Drive Output Efficiency A Depyt Measurements Ensers, Casessanting *	Label Units Equation Range Enabled Analog ligut 1 Torque NM ANA150 100 m 2 Analog ligut 2 Analog 100 m 2 100 m 2 2 100 m 2 Analog ligut 3 Analog 1 100 m 100 m 2	
× 3	Counter Input 1 Speed RPM Count1+1000/60	
Wilcard Apply >	Counter Input 2 Counter2	
Instrument PA3000 Connection USB NI-VISA64 15.0 Serial Number 8000004 Firmware Ver. 3.1.0rc20		

图 48: 扭矩和转速测量的辅助输入设置

- 请参阅辅助输入/输出,了解所需模拟或计数器输入的针脚数,并将信号(扭矩、转速或其他)直接连接到后面板 AUXILIARY INPUTS/OUTPUTS 连接器上的相应针脚。
- 若要使用 PWRVIEW 启用辅助输入,请转至 Setup 选项卡。
- 在 Setup 选项卡中,转至 Wiring 页面,然后选中页面底部附近的复选框,以启用 Auxiliary Inputs (Analog and Counters)。将会新建一个名为 Auxiliary Inputs 的选项卡页面。
- 在 Auxiliary Inputs 选项卡页面中,为相应模拟和计数器输入输入 所需标签、单位和公式。底部的公式准则可用于在输入公式时提供帮助。启用所需的输入。
- 转至 Measure 选项卡页面, 然后单击 Start 按钮。

所选的模拟和计数器输入信号以及适当的标签和单位将显示在测量网格上。

可以在测量网格的 Formula 列中输入所需公式以及任何其他测量参数,以便使用模拟和计数器输入进一步设置系统效率公式。

波形、谐波和趋势图:在测量网格内,可以通过单击菜单栏中的相应图标 来查看波形、谐波和趋势图。

图 49: 谐波条形图

- PWRVIEW 软件中的波形使用从 PA3000 收集的谐波数据来构建。波形的 准确度取决于可用的谐波信息。为得到最佳结果,请选择在设置区域 显示最大数量的谐波。选择 100 次谐波,以便 PA3000 可以提供最佳 结果。如果未选择谐波,波形功能将显示一个空白屏幕。
- 可以为所有电压、电流和瓦特测量启用谐波条形图。最多可通过设置 屏幕选择 100 次谐波。将鼠标悬停在任何谐波条形图上会显示该谐波 的基波绝对值和百分比。
- 右键单击所需的参数或单击菜单栏中的趋势图图标可以为任何测量参数激活趋势图。可以单击菜单栏中的 Reset 按钮重置趋势图。

数据记录: 对于需要负载和信源扫描的大多数效率测量,记录数据很重要。

- 若要使用 PWRVIEW 记录数据,请单击菜单栏中的 Record 按钮。软件 将开始记录所选的全部数据,包括公式和极限。
- 若要更改数据记录速率或设置总记录时间,请单击 Record 图标上的 下箭头打开数据记录设置。您可以从中选择所需的记录时长和间隔。
- 若要停止数据记录,请单击 Stop 按钮。
- 记录的所有数据均存储在本地计算机上的数据库中。若要访问这些数据,请单击 Results 选项卡,然后单击测量图标。对话框将显示所有存档数据。
- 选择所需的数据集,然后导出为 Excel 或 .csv 格式。

自定义极限:还可通过任何测量参数设置自定义极限。自定义极限帮助根据各种标准或测试规范设置极限。

- 若要设置自定义极限,请右键单击所需的测量参数或单击菜单栏中的极限设置图标。停止测量更新以设置自定义极限。
- 自定义极限在测量网格上显示为一个单独的选项卡。如果极限失败, 结果列将显示红色字体。将鼠标悬停在结果上将显示极限函数、极限 值和相对值。

示例 3:能耗测试

需要对家用和办公设备进行能耗测试,以符合多项国际和地区标准计划, 比如 ENERGY STAR*。能耗测试涉及对较长一段时间(通常为数天)的功耗 进行积分。使用 PA3000 上的专用积分模式可以更轻松、更快速地进行能 耗测试。

- **测量挑战** 能耗测试通常在一个很宽的负载范围内进行,需要可以捕获所有动态负载 变化的精确测量系统。如果预计负载会有几个负载变化,Tektronix 建议 在手动量程内设置 PA3000。
- **测量解决方案** PA3000 上的积分器模式对指定周期内的所需测量进行积分。积分器模式 在 Measurements 菜单下有测量选项,比如瓦特小时、伏安小时、安培小时和小时。积分测量以每组为基础,可以针对单相和三相配置启用。有关 积分设置以及所有可用测量的详细信息将在本手册的"积分器模式"中介 绍。(见第38页,积分器模式)
 - **测试设置** 以下步骤介绍使用 PA3000 在家用或办公设备上设置能耗测量的过程。此 方法可用于测试插入到壁式交流电源插座的任何 DUT 的能耗。
 - 1. 使用 Tektronix 接线盒 (BB1000) 将 DUT 上的交流输入连接到 PA3000 的第一条通道,如接线图中所示。

接线盒接入电流信号并测量输入端子的电压。这可以更加轻松安全地 使用 PA3000 随附的 4 mm 安全导线连接 DUT 上的交流输入信号。

2. 完成所有连接后,使用以下两种方法之一进行效率测量。

图 50: 能耗测量接线图

方法 1:能耗测量(直 接在 PA3000 上进行) 以下步骤介绍使用 PA3000 在家用或办公设备上设置能耗测试的过程。

图 51: PA3000 上的能耗测试

1. 将 PA3000 设置为默认配置: a. 按 🗐 b. 向下滚动到 User Configuration 并按 **D**。 c. 选择 Load Default Configuration, 然后按 ✓ 确认。 PA3000 将加载默认设置并显示确认屏幕。按 🌅 , 然后按 🚺 返回 到主菜单。 2. 若要启用积分器模式, 请转至 Modes → Select Mode → Integrator。 3. 按 【 ,选择Setup Modes → Integrator Setup, 然后选择所需的启 动方法。 - 通过按 INTEG RUN 键手动启动和停止积分。 始终允许设置特定时间来启动积分。 电平允许在特定信号上设置触发电平以启动积分测量。 4. 返回 Integrator Setup 菜单以配置始终启动、时长或触发电平。 说明: Integrator Setup 菜单还提供一个选项用于为设计设置目标功率 因数。此功能显示将平均功率因数校正为目标功率因数所需要的 VAr 值。 请参阅本手册的"积分器模式"部分,了解有关各个选项的更多信息。 (见第38页,积分器模式) 5. 设置积分模式并选择了启动-停止方法后,按 PA3000 将显示积分参数,例如:Hr、Whr、VAHr 和 AHr。 6. DUT 上的功率和 PA3000 上的结果将开始更新。 在使用前面板上的 INTEG RUN 键手动触发或通过所选的启动方法触发 前,积分结果将显示为零。 运行积分测量的过程中, INTEG RUN 键下的 LED 指示灯保持亮起。 7. 若要停止积分,请再次按 INTEG RUN 键;若要重置,请使用 RESET/CLEAR 键。

积分器可以在 PA3000 的所有组/通道上同时运行。

在积分器模式下,可以通过按 **f** 来启用积分图。积分图显示给定组的所有积分测量。使用前面板上的箭头键可滚动浏览不同的组。

可以通过按 INT 软键选择积分图的其他参数。

根据需要进行其他设置 数据记录: 在涉及负载和信源扫描的长时间效率测试过程中,通过记录功能,可以记录数据随时间的变化情况。使用 DATA OUT 键将数据记录到 连接至前面板 USB 连接器的任何兼容的闪存驱动器中。按 并转至 Interfaces → USB Host Data Out,可以更改实际的记录间隔。记录文件 将保存为.csv 文件。

设置量程: 默认情况下, PA3000 采用自动量程。自动量程速度较快并且 通常不易被察觉,但设置自动量程时可能导致数据丢失。测量能耗时采用 固定量程可确保设置量程过程中不会丢失数据。若要设置固定量程,请按 并转至 Ranging → Current Range, 然后根据自动量程期间进行的 测量,选择适当的固定量程。如果量程过低,将显示警告消息。这不会损 坏 PA3000。不得将量程设得过高,因为这将影响整体精度。

方法 2:能耗测试 以下步骤介绍使用 PA3000 以及 PWRVIEW 软件在家用或办公设备上设置 (PWRVIEW 软件) 能耗测试的过程。

- 1. 使用与前述直接在 PA3000 上进行测试的示例相同的测试设置。
- 完成所有电源连接后,使用随附的 USB 电缆将 PA3000 连接到装有 PWRVIEW 软件的计算机。还可根据需要使用以太网或 GPIB
- 3. 双击桌面图标,打开 PWRVIEW 软件。
- 4. 单击 Add 按钮以连接 PA3000。

选择面板中将列出所有可用仪器。

5. 选择所需的仪器 (PA3000), 然后单击 Connect。

说明: 左面板上有多种默认应用和合规性测试可供选择。

6. 选择左面板上 Applications/Test 部分下的 Energy Consumption, 然 后单击 Wizard 按钮。

向导帮助您进行接线和分流器选择。

- 7. PA3000 可以计算将平均功率因数校正为目标值所需要的 VAr 值。这可以在使用向导时通过输入所需的功率因数来选择。
- 8. 单击 Next 以查看, 然后单击 Finish。
- 9. 转至 Measure 选项卡, 然后单击 Start 按钮开始测量。 所有积分测量均以零值开始。
- 单击顶部功能区中的绿色 Start 按钮开始积分。
 每个积分测量均将开始实时更新。
- 11. 如有需要,通过单击绿色 Reset 按钮重置积分。

每条单独通道均可用于在多台设备上运行积分测试。积分测试还适用于 三相设备。从所需通道或三相组的 Setup 页面的 Mode 下拉菜单中选择 Integration。

根据需要进行其他设置 趋势图: 可以通过 PWRVIEW 中的趋势图功能激活积分图。

图 52: 积分趋势图

右键单击所需的参数或单击菜单栏中的趋势图图标可以为任何积分测量激 活趋势图。可以使用菜单栏中的 Reset 按钮重置趋势图。

数据记录:数据记录对于大多数能耗测试都很重要。

- 若要使用 PWRVIEW 记录数据,请单击菜单栏中的 Record 按钮。软件 将开始记录所选的全部数据,包括公式和极限。
- 若要更改数据记录速率或设置总记录时间,请单击 Record 图标上的 下箭头打开数据记录设置。您可以从中选择所需的记录时长和间隔。
- 若要停止数据记录,请单击 Stop 按钮。
- 记录的所有数据均存储在本地计算机上的数据库中。若要访问这些数据,请单击 Results 选项卡,然后单击测量图标。对话框将显示所有存档数据。
- 选择所需的数据集,然后导出为 Excel 或 .csv 格式。

自定义极限:还可通过任何测量参数设置自定义极限。自定义极限帮助根据各种标准或测试规范设置极限。

20 I In	1			Ener	gy Consump	tion Testing.vpm -	PWRVIEW		_ O X
1.	Setup	Measure	Results						^ 0
O Stap	Reset	¢i¢ Si Setup Limits	gnificant Figures Averaging: 2 Displa	S • 1 • Gero Blanking:	Efficient	ure ncy Stop Res	et	SnapShot Re Data Loppin	
Measure	ment U	enits Results 🧰	Trend 1 . W						
Index	Reas	PA3000(000	6) 1 PA3000(00 Resu	06) 1 PA300	0(0006) 2	PA3000(0006) 2 Result	PA3000(0006) 3	PA3000(0006) Result	3
1	VIES	120.13	v -134.0	10 mV 38	.376 v	1.6241 V	38.525 V	1.4755	v
12	Ares	477.76	mA 22.24	15 mA 31	6.75 BA	-183.25 mA	332.75 mA	167.25	eA
-	PE	472.70	a 427.3	10 m 76	5.43 m	134,57 m	Limit Parction	0.5	
5	Vcf	1.3752	-38.85	0 = 1.	3646	-49.420 m	Relative Value	1.5761	
6	Acf	4.3516	-648.4	1 . 4.	1003	-899.73 m	Desul 4169	C FAIL AD TO	
7	Mir	9.6786	4.678	16 3.	2605	-1.7395	3,7793	-1.2207	
8	VAHE	20.424	15.42	M 4,	3118	-688.16 m	4,5254	-474,65 (
Measure	ments ru	nning							

图 53: 自定义极限

- 若要设置自定义极限,请右键单击所需的测量参数或单击菜单栏中的 极限设置图标。停止测量更新以设置自定义极限。
- 自定义极限在测量网格上显示为一个单独的选项卡。如果极限失败, 结果列将显示红色字体。将鼠标悬停在结果上将显示极限函数、极限 值和相对值。

示例 4:待机电源测量 (IEC 62301 Ed. 2.0)

电源、适配器以及常见电子电气产品常常以待机模式运行。例如,用遥控 关闭之后在待机状态下仍耗电的电视,显示时钟的微波炉,或已完成充电 的手机充电器。

通过这些及其他常见负载累积消耗的电能非常显著,ENERGY STAR[®] 和欧洲 生态指令 (European Eco-Directives) 等计划试图限制设备在待机模式下 消耗的电能。典型待机电量继续从 2010 年的 1 瓦下降到 2016 年的 VI 级效率。

测量挑战 相对于 DUT 正常运行的情况,待机电源和所测得的电流相对较低。PA3000 将准确测量低至 100 µA 的电流以及满载电流。PA3000 提供低电流测量 量程以及极低的噪声,可准确测量待机电流和功率。

> 为满足待机法规,电源通常以突发模式运行,在这种模式下,以小突发形 式耗电,然后强制电路进入休眠状态。为在突发模式下进行准确的待机测 量,PA3000 执行以下操作:

- 连续不断地采样波形,以保证不丢失数据。
- 对所测量的所有数据进行平均计算,以产生稳定的结果。
- 测量解决方案 PA3000 提供专用待机电源模式,以便在工作台快速检查待机电源。PWRVIEW 软件与 PA3000 配合使用还可提供符合 IEC62301 Ed. 2.0.标准的全面合规性待机电源测试。PA3000 上的 1 A 分流器针对低至 80 µA 的电流提供高分辨率和精度测试。这使 PA3000 能够在 240 V 下测量低至 20 mW 的待机电源。
 - 测试设置 完成以下步骤,以设置 PA3000 进行待机电源测量:
 - 使用 Tektronix 接线盒(BB1000) 连接 DUT,如接线图中所示。(见 图54)
 - 如果预期电流低于 1 A, 请使用 PA3000 上的 1 A 分流器, 以便实现 更高的精度。
 - 使用 VLO Source 连接电压。使用 VLO Source 端子进行待机电源测量,将低电压节点移动到当前分流器的源端。这有助于消除因 PA3000的电压表阻抗消耗的电流而导致的测量错误。这在进行极低待机电源测量时非常重要。对于所有其他测量,应使用 VLO 负载端子。

图 54: 待机电源测量接线图

方法 1:待机电源快速 检查(直接在 PA3000 上进行) PA3000 的前面板模式旨在让产品设计人员能够快速可靠地检查待机功耗。

自动启用待机电源模式会设置一个较长的平均时间,以对典型的功率变化 和突发进行平均计算,并且它禁用低电平消隐,以便可以显示极低的功率 和电流值。

```
说明: PA3000 在待机模式下连续不断地采样,以确保不会丢失数据。
```


图 55: 待机电源模式

如果预期待机电流低于 1 A, 请选择 PA3000 的 1 A 分流器输入。

- 1. 若要选择 1 A 分流器,请转至主菜单(按 三),转至 Inputs → Shunt 并选择 Internal 1 A; 按 ✓ 确认。
- 若要启用专用待机电源模式,请转至主菜单,转至 Modes → Select Mode → Standby Power,然后按 确认。
- 3. 按 册 开始进行待机测量。
- **根据需要进行其他设置** 积分时间窗口: 默认积分时间是 10 秒。在 Modes → Setup Modes → Standby Setup 中可以根据需要对此进行调整。如果 DUT 稳定,请选择更 短的时间,以便更快速完成测量。如果测量不稳定,请选择更长的积分时间。如果有疑问,请使用 PWRVIEW 软件内置的全面合规性方法。

设置量程:默认情况下,PA3000 采用自动量程。自动量程速度较快并且 通常不易被察觉,但设置自动量程时可能导致数据丢失。测量待机电源时 采用固定量程可确保设置量程过程中不会丢失数据。若要设置固定量程, 请选择 Inputs → Ranging → Current Range,然后根据自动量程期间进 行的测量,选择适当的固定量程。如果量程过低,将显示警告消息。这不 会损坏 PA3000。不得将量程设得过高,因为这将影响整体精度。

带宽: 对于具有高频率组件的低功耗待机信号,可以启用低带宽滤波器。 可通过 Inputs setup 启用 10 kHz 低带宽滤波器。由于高频率组件会影 响 RMS 值,应用低通滤波器可能会改变电压、电流和功率的 RMS 值。 **自动归零:** 在运行待机电源测试前,使用 System Configuration 菜单下的 Autozero → Run Now 功能运行自动归零。这将确保补偿所有偏置,并且低电流和功率读数准确。

在 User Configuration 菜单中,所有设置均可保存供以后使用。

方法 2:IEC 62301 Ed. 2.0 全面合规性待机电 源测试(PWRVIEW 软 件) PWRVIEW 软件与 PA3000 配合使用可以利用 IEC 62301 Ed. 2.0 / EN50564 的全面合规性技术测试待机电源。使用 PWRVIEW 软件时进行测量很轻松, 保证了全面合规性待机测试测量的准确性。软件计算实时不稳定度,并按照标准要求执行电源平均计算。

图 56: 全面合规性 IEC 62301 待机电源测试

- 1. 使用与前述直接在 PA3000 上进行测试的示例相同的测试设置。
- 2. 完成所有电源连接后,使用随附的 USB 电缆将 PA3000 连接到装有 PWRVIEW 软件的计算机。还可根据需要使用以太网或 GPIB。
- 3. 双击桌面图标,打开 PWRVIEW 软件。
- 4. 单击 Add 按钮以连接 PA3000。

选择面板中将列出所有可用仪器。

5. 选择所需的仪器 (PA3000), 然后单击 Connect。

说明: 左面板上有多种默认应用和合规性测试可供选择。

6. 单击主菜单中 Application Mode 区域中的 Test 按钮。

这将使左面板上的合规性测试呈灰显状态。

7. 选择合规性测试下的 IEC 62301 Standby Power 选项, 然后单击 Wizard 按钮。

该向导提供设置待机电源测试的简单步骤。

- 8. 在向导的相应页面输入适当信息,然后连续单击完成所有步骤,正确 设置 PA3000 以进行测试。
- 9. 如果输入电流低于 1 A, 请使用 PA3000 上的 1 A 分流器, 以便实现 更高的分辨率和精度。
- 10. 应用所有设置后,单击 PWRVIEW 窗口顶部的 Test 选项卡。

在开始测试前,可以在顶部功能区填写实验室、客户、产品信息和环 境条件等测试详细信息。

您可以使用左面板选择所需的功率极限、预期频率和输入电压。

根据 IEC 62301,待机电源测试的默认运行时间是 15 分钟;可以根据 地区或当地规定更改此时间。

11. 完成所有设置后,单击 Start 按钮。

测试将按所选择的持续时间运行,并将在左面板中更新所需的所有测量。待机电源随时间的变化情况以图形方式显示。

还会按照标准要求实时评估电压质量、功率稳定性和不确定度。

测试将根据所有评估的参数显示 Pass/Fail 状态。

可以在 Results 选项卡下查看测试汇总。将在 Test Summary and General Results 下汇总所有所需参数的 Pass/Fail 状态。

可以使用 Power Readings 选项卡滚动浏览时间标度以及调试给定时间标记的具体问题。使用窗口顶部的滚动条可滚动时间线。

可以通过单击顶部功能区中的完整报告 PDF 图标,将测试结果导出为完整的报告。或者,可以使用导出 CSV 图标导出原始数据。

	Maxwell	est Report No 1512	10-03455	0-F	0				
	Measurer	nent of Standby Pow	er to IEC 6.	2301 EG. 2	.0				
Name: Address:	Customer Com 123 ABC Drive 2nd line Customer City Customer State Customer Count	oany Customer Post Code Ty	Name: Telstranks Name: 123 ABC Drive 2nd line Your City Your State Your post code Your County Date of issue: 2015-Dec-15						
Manufacturer: Description: Model: Serial Number: Rated Voltage: Rated Frequency: Documentation ref. Configuration:	Unit Under Tes Manufacturer G USB Charger	ompany Fi	Manufacturer: Description: Model: Serial Number: mware Version: Test Software:	Reference 20 Tektronix Power Analyz PA3000 B000006 Ver.3.1.0xc19 PWRVIEW ve	25170507523 Der r. 3.1.0.8				
Time of Test	Test Conditions		Aurente Drawer	Test Summa	7				
Test Voltage:	120V ±1%	043030 PM	Proser Limit	1 0000 W					
Test Frequency:	50Hz ±1%		Results						
Voltage Crest Factor:	< 2% IHC 1.34 < Vcf < 1	All values in this table refer to results from the last 2/3 of the test	Average	Minimum	Maximum	MinLimit	MaxLimit		Status
Humidity:	< 75%	Power	436.93 mW	430.56 mW	441.42 mW	N/A	1.00	W 00	PASS
		Voltage	120.18 V	119.98 V	120.31 V	118.80 V	121	20 V	PASS
Power m	easurement	Current	9.8433 mA	9.5494 mA	10.138 mA	N/A		N/A	N/A
Measurement of	stanaby pour	Frequency	59.993 Hz	59.956 Hz	60.018 Hz	49.500 Hz	0 Hz 50.500 Hz (A N/A		FAIL
equipment - reed	surement of	Power Factor	369.38 m 1.3761	359.45 m 1.3746	378.99 m	N/A			N/A
o account to mater		Voltage Crest Factor			1.3792	1.3400	1.45	00	PASS
		Current Crest Factor	5.1382	4.4843	5.8958	N/A		N/A	N/A
		Voltage THC	2.3618 %	2.1684 %	2.4541.%	N/A	2.00	00 %	FAIL
					-		-	N/A	PASS
		Power Graph	IS					30 s	PASS
0.44000 0.43800 0.43800 0.43800 0.4320	an loin at the	Power Graph	is Uhra Mind Mindan Julia				M	30 s reference in 5 standards - limit presori	PASS drument used. bed in the standard

图 57: IEC 62301 Ed. 2.0 待机电源测试报告

根据需要进行其他设置 设置量程: 默认情况下, PWRVIEW 软件在 Auto-Up-Only 下设置 PA3000 电流量程。Auto-Up-Only 选项按次序排列 PA3000 的量程,直到找到输入信号未被限幅的最高量程。这有助于为测试设置最佳量程。或者,如果预期峰值电流已知,可以选择手动量程,以实现更高的精度。可以通过 Range选项下的 Setup 页面,为所选的分流器选择手动量程。

带宽: 对于具有高频率组件的低功耗待机信号,可以启用低带宽滤波器。可通过 Filter 下拉选项下的 Setup 屏幕启用 10 kHz 低带宽滤波器。由于高频率组件会影响 RMS 值,应用低通滤波器可能会改变电压、电流和 功率的 RMS 值。

交流电源: IEC 62301 待机电源全面合规性测试需要使用非常稳定的交流 电源,如标准中所详细描述的那样。电压和频率不得超出 1% 的容限。此 外,输入 VTHC(电压总谐波含量)不得超出前 13 次谐波的 2% 范围, VCF(电压波峰因数)不得超出 1.34 至 1.49 范围。Tektronix 建议使用 满足全面一致性测试标准要求的稳定外部交流电源。

示例 5: 浪涌电流测试

由于低输入阻抗,大多数电气设备的初始电流消耗远远高于标称稳定状态下的电流消耗。众所周知,电机驱动和变换器的浪涌电流比稳定状态电流高二十倍。为确定输入导体和保险丝的额定电流,检定浪涌电流便很重要。

- **测量挑战** 准确测量浪涌电流需要高采样率和无隙信号采集。由于电流会远远高于预 期稳定状态电流,测量浪涌电流时在测量设备上选择正确的电流量程便很 重要。
- 测量解决方案 PA3000 具有 1 MS/s 采样率,可以为浪涌电流测量准确记录峰值信号采 样。通过 PA3000 菜单的最小和最大保持值功能,您可以在前屏上捕获浪 涌电流及其他峰值事件。还可通过 PWRVIEW 软件测量浪涌电流。此示例 介绍用于测量浪涌电流的 PA3000 设置。
 - 测试设置 完成以下步骤设置 PA3000 进行浪涌电流测量:
 - 使用 Tektronix 接线盒(BB1000) 连接 DUT,如接线图中所示。(见 图58)
 - 使用 PA3000 上的 30 A 分流器测量浪涌电流。因为峰值电流可能非常大,不建议使用 1 A 分流器测量浪涌电流,即使标称稳定状态电流低于 1 A 的应用也不例外。

图 58: 浪涌电流测量接线图

方法1:浪涌电流测量	以	下步骤介绍设置 PA3000 进行浪涌电流测量的过程。
(直接在 PA3000 上进 行)	1.	将 PA3000 设置为默认配置:
, ij <i>j</i>		a. 按 📃。
		b. 向下滚动到 User Configuration 并按 ▶。
		c. 选择 Load Default Configuration,然后按✔ 确认。
		PA3000 将加载默认设置并显示确认屏幕。按 🛄, 然后按 🗹 返回 到主菜单。
	说 设	明 : 需要将 PA3000 配置为连续采样并返回非平均结果。还需要将其 置为存储峰值。
	2.	必须将电压和电流通道上的量程设置为固定量程,以支持连续采样。若要选择手动量程,请转至主菜单(按
		如果预期浪涌电流未知,请选择最高量程,然后根据需要调低量程, 之后根据需要反复测试以达到更准确的结果。
	3.	PA3000 自动消隐低于量程 10% 的所有结果。消隐持续保持激活状态,并可以干扰浪涌事件的记录。
		若要禁用消隐,请转至主菜单,然后转至 System Configuration → Blanking → Off。
	4	收亚物估识头 1 估计用不防时间亦化进行亚扬 枯石宁茂单 就后

- 将平均值设为 1,使结果不随时间变化进行平均。转至主菜单,然后 转至 System Configuration → Averaging → Channel Averaging。 在窗口中将值设为 1。
- 5. 在 System Configuration 菜单下关闭自动归零功能。
- 6. 若要启用峰值保持,需要启用最大和最小保持值列。转至主菜单,然后转至 Measurement Configuration → Maximum Hold → Enabled。 为最小保持值重复该步骤。

启用状态下,最大和最小保持值列将记录正周期和负周期峰值。

- 7. 在 Measurements 菜单中启用峰值电流测量参数。选择 Apk+和 Apk-, 因为峰值可能为正,也可能为负。
- 8. 设置完 PA3000 后, 将 DUT 连接到接线盒。
- 9. 浪涌电流将在结果屏幕的最大值和最小值列中显示。PA3000 将在正负 周期内保持最大采样值。