
Copyright © 2013–2016 Pico Technology Limited. All rights reserved.

Programmer's Guide

ps5000apg.en r3

Flexible Resolution Oscilloscopes

PicoScope® 5000 Series (A API)

IPicoScope 5000 Series (A API) Programmer's Guide

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Contents
1 Welcome .. 1

2 Introduction .. 2

1 License agreement .. 2

2 Trademarks .. 2

3 System requirements .. 3

3 Programming with the PicoScope 5000 Series (A API) .. 4

1 Driver .. 4

2 Voltage ranges .. 5

3 Triggering ... 6

4 Sampling modes .. 7

1 Block mode .. 8

2 Rapid block mode ... 11

3 ETS (Equivalent Time Sampling) .. 16

4 Streaming mode .. 18

5 Retrieving stored data ... 20

5 Timebases .. 21

6 Power options .. 22

7 Combining several oscilloscopes .. 23

4 API functions .. 24

1 ps5000aBlockReady (callback) .. 26

2 ps5000aChangePowerSource .. 27

3 ps5000aCloseUnit .. 28

4 ps5000aCurrentPowerSource .. 29

5 ps5000aDataReady (callback) ... 30

6 ps5000aEnumerateUnits ... 31

7 ps5000aFlashLed .. 32

8 ps5000aGetAnalogueOffset ... 33

9 ps5000aGetChannelInformation .. 34

10 ps5000aGetDeviceResolution .. 35

11 ps5000aGetMaxDownSampleRatio .. 36

12 ps5000aGetMaxSegments ... 37

13 ps5000aGetNoOfCaptures .. 38

14 ps5000aGetNoOfProcessedCaptures ... 39

15 ps5000aGetStreamingLatestValues .. 40

16 ps5000aGetTimebase .. 41

17 ps5000aGetTimebase2 .. 42

18 ps5000aGetTriggerTimeOffset .. 43

19 ps5000aGetTriggerTimeOffset64 .. 44

20 ps5000aGetUnitInfo ... 45

21 ps5000aGetValues .. 47

1 Downsampling modes ... 48

ContentsII

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

22 ps5000aGetValuesAsync ... 49

23 ps5000aGetValuesBulk ... 50

24 ps5000aGetValuesOverlapped .. 51

1 Using the GetValuesOverlapped functions .. 51

25 ps5000aGetValuesOverlappedBulk .. 53

26 ps5000aGetValuesTriggerTimeOffsetBulk ... 54

27 ps5000aGetValuesTriggerTimeOffsetBulk64 .. 56

28 ps5000aIsReady .. 57

29 ps5000aIsTriggerOrPulseWidthQualifierEnabled ... 58

30 ps5000aMaximumValue .. 59

31 ps5000aMemorySegments ... 60

32 ps5000aMinimumValue ... 61

33 ps5000aNoOfStreamingValues .. 62

34 ps5000aOpenUnit .. 63

35 ps5000aOpenUnitAsync .. 64

36 ps5000aOpenUnitProgress .. 65

37 ps5000aPingUnit .. 66

38 ps5000aRunBlock ... 67

39 ps5000aRunStreaming .. 69

40 ps5000aSetBandwidthFilter ... 71

41 ps5000aSetChannel .. 72

42 ps5000aSetDataBuffer .. 74

43 ps5000aSetDataBuffers ... 75

44 ps5000aSetDeviceResolution ... 76

45 ps5000aSetEts .. 77

46 ps5000aSetEtsTimeBuffer ... 78

47 ps5000aSetEtsTimeBuffers .. 79

48 ps5000aSetNoOfCaptures ... 80

49 ps5000aSetPulseWidthQualifier .. 81

1 ps5000a_PWQ_CONDITIONS structure ... 83

50 ps5000aSetSigGenArbitrary .. 84

1 AWG index modes ... 86

2 Calculating deltaPhase ... 86

51 ps5000aSetSigGenBuiltIn .. 88

52 ps5000aSetSigGenBuiltInV2 .. 90

53 ps5000aSetSigGenPropertiesArbitrary ... 92

54 ps5000aSetSigGenPropertiesBuiltIn ... 93

55 ps5000aSetSimpleTrigger .. 94

56 ps5000aSetTriggerChannelConditions ... 95

1 PS5000A_TRIGGER_CONDITIONS structure ... 96

57 ps5000aSetTriggerChannelDirections .. 97

58 ps5000aSetTriggerChannelProperties .. 98

1 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure .. 99

59 ps5000aSetTriggerDelay ... 100

IIIPicoScope 5000 Series (A API) Programmer's Guide

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

60 ps5000aSigGenArbitraryMinMaxValues ... 101

61 ps5000aSigGenFrequencyToPhase ... 102

62 ps5000aSigGenSoftwareControl .. 103

63 ps5000aStop ... 104

64 ps5000aStreamingReady (callback) .. 105

65 Wrapper functions .. 106

5 Programming examples .. 108

6 Driver status codes ... 109

7 Enumerated types and constants .. 114

8 Numeric data types .. 115

9 Glossary ... 116

Index ... 119

PicoScope 5000 Series (A API) Programmer's Guide 1

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

1 Welcome
The PicoScope 5000 A and B Series PC
Oscilloscopes from Pico Technology are a range
of high-specification, real-time measuring
instruments that connect to the USB port of
your computer. The series covers various
options of portability, deep memory, fast
sampling rates and high bandwidth, making it
a highly versatile range that suits a wide range
of applications. The oscilloscopes are all hi-
speed USB 2.0 devices, also compatible with
USB 1.1 and USB 3.0.

B

5V

A

Ext

G

Pico
Sco
pe

www.picotech.com

PicoScope 5000 Series

B
C

D

5V

A

Ext

G

Pico
Sco
pe

www.picotech.com

PicoScope 5000 Series

This manual explains how to use the API (application programming interface)
functions, so that you can develop your own programs to collect and analyze data from
the oscilloscope.

The information in this manual applies to the following oscilloscopes:

 PicoScope 5242A
PicoScope 5243A
PicoScope 5244A
PicoScope 5442A
PicoScope 5443A
PicoScope 5444A

The A models are high speed portable
oscilloscopes, with a function generator.

 PicoScope 5242B
PicoScope 5243B
PicoScope 5244B
PicoScope 5442B
PicoScope 5443B
PicoScope 5444B

The B models are as the A models, but
feature an arbitrary waveform generator
and deeper memory.

For information on any PicoScope 5000 Series oscilloscope, refer to the documentation
on our website.

http://www.picotech.com

Introduction2

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

2 Introduction
2.1 License agreement

Grant of license. The material contained in this release is licensed, not sold. Pico
Technology Limited ('Pico') grants a license to the person who installs this software,
subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of and agree to abide by these conditions.

Usage. The software in this release is for use only with Pico products or with data
collected using Pico products.

Copyright. The software in this release is for use only with Pico products or with data
collected using Pico products. You may copy and distribute the SDK without restriction,
as long as you do not remove any Pico Technology copyright statements. The example
programs in the SDK may be modified, copied and distributed for the purpose of
developing programs to collect data using Pico products.

Liability. Pico and its agents shall not be liable for any loss or damage, howsoever
caused, related to the use of Pico equipment or software, unless excluded by statute.

Fitness for purpose. No two applications are the same, so Pico cannot guarantee
that its equipment or software is suitable for a given application. It is therefore the
user's responsibility to ensure that the product is suitable for the user's application.

Mission-critical applications. Because the software runs on a computer that may be
running other software products, and may be subject to interference from these other
products, this license specifically excludes usage in 'mission-critical' applications, for
example life-support systems.

Viruses. This software was continuously monitored for viruses during production.
However, the user is responsible for virus checking the software once it is installed.

Support. No software is ever error-free, but if you are dissatisfied with the
performance of this software, please contact our technical support staff.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

2.2 Trademarks
Pico Technology and PicoScope are trademarks of Pico Technology Limited,
registered in the United Kingdom and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark
Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or
trademarks of Microsoft Corporation in the USA and other countries. LabVIEW is a
registered trademark of National Instruments Corporation. MATLAB is a registered
trademark of The MathWorks, Inc.

PicoScope 5000 Series (A API) Programmer's Guide 3

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

2.3 System requirements
Using the Pico Technology SDK
To ensure that your PicoScope 5000 Series PC Oscilloscope operates correctly, you
must have a computer with at least the minimum system requirements to run one of
the supported operating systems, as shown in the following table. The performance of
the oscilloscope will be better with a more powerful PC, and will benefit from a
multicore processor.

Item Specification

Operating system Windows 7, Windows 8 or Windows 10
32 bit and 64 bit versions

Processor
Memory
Free disk space

As required by the operating system

Ports USB 2.0 or USB 3.0 port

USB
The ps5000a driver offers four different methods of recording data, all of which
support USB 2.0 and USB 3.0 connections. The 5000 A and B Series oscilloscopes are
all hi-speed USB 2.0 devices: the transfer rate will not increase by using USB 3.0.

Programming with the PicoScope 5000 Series (A API)4

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3 Programming with the PicoScope 5000 Series (A
API)
The ps5000a.dll dynamic link library in the lib subdirectory of your SDK

installation allows you to program a PicoScope 5000 Series (A API) oscilloscope using
standard C function calls.

A typical program for capturing data consists of the following steps:

Open the scope unit.
Set up the input channels with the required voltage ranges and coupling type.
Set up triggering.
Start capturing data. (See Sampling modes, where programming is discussed in
more detail.)
Wait until the scope unit is ready.
Stop capturing data.
Copy data to a buffer.
Close the scope unit.

Numerous sample programs are included in the SDK. These demonstrate how to use
the functions of the driver software in each of the modes available.

3.1 Driver
Your application will communicate with a PicoScope 5000 A API driver called
ps5000a.dll, which is supplied in 32-bit and 64-bit versions. This driver is used by

all the 5000 A/B Series oscilloscopes (but not the PicoScope 5203 and 5204). The
driver exports the ps5000a function definitions in standard C format, but this does not
limit you to programming in C. You can use the API with any programming language
that supports standard C calls.

The API driver depends on another DLL, picoipp.dll (which is supplied in 32-bit and

64-bit versions) and a low-level driver called WinUsb.sys. These are installed by the

SDK and configured when you plug the oscilloscope into each USB port for the first
time. Your application does not call these drivers directly.

PicoScope 5000 Series (A API) Programmer's Guide 5

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.2 Voltage ranges
You can set a device input channel to any voltage range from ±10 mV to ±20 V with
the ps5000aSetChannel function. Each sample is scaled to 16 bits, and the

minimum and maximum values returned to your application are given by
ps5000aMinimumValue and ps5000aMaximumValue as follows:

Function Voltage Value returned
decimal hex

8-bit
ps5000aMaximumValue maximum +32 512 7F00

zero 0 0000

ps5000aMinimumValue minimum –32 512 8100

12, 14, 15 and 16-bit
ps5000aMaximumValue maximum +32 767 7FFF

zero 0 0000

ps5000aMinimumValue minimum –32 767 8001

Example at 8-bit resolution
1. Call
ps5000aSetChannel
with range set to

PS5000A_1V.

2. Apply a sinewave
input of 500 mV
amplitude to the
oscilloscope.

3. Capture some data
using the desired
sampling mode.

4. The data will be
encoded as shown
opposite.

External trigger input
The external trigger input (marked EXT), where available, is scaled to a 16-bit value
as follows:

Voltage Constant Digital value
PS5000A_EXT_MIN_VALUE –32 767

0 V 0

+5 V PS5000A_EXT_MAX_VALUE +32 767

Programming with the PicoScope 5000 Series (A API)6

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3.3 Triggering
PicoScope 5000 Series oscilloscopes can either start collecting data immediately, or be
programmed to wait for a trigger event to occur. In both cases you need to use the
PicoScope 5000 trigger function ps5000aSetSimpleTrigger, which in turn calls:

ps5000aSetTriggerChannelConditions
ps5000aSetTriggerChannelDirections
ps5000aSetTriggerChannelProperties

These can also be called individually, rather than using ps5000aSetSimpleTrigger
in order to set up advanced trigger types such as pulse width.

A trigger event can occur when one of the signal or trigger input channels crosses a
threshold voltage on either a rising or a falling edge. It is also possible to combine up
to four inputs using the logic trigger function.

The driver supports these triggering methods:

Simple Edge
Advanced Edge
Windowing
Pulse width
Logic
Delay
Drop-out
Runt

The pulse width, delay and drop-out triggering methods additionally require the use of
the pulse width qualifier function, ps5000aSetPulseWidthQualifier.

PicoScope 5000 Series (A API) Programmer's Guide 7

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.4 Sampling modes
PicoScope 5000 Series oscilloscopes can run in various sampling modes.

Block mode. In this mode, the scope stores data in its buffer memory and then
transfers it to the PC. When the data has been collected it is possible to examine
the data, with an optional downsampling factor. The data is lost when a new run is
started in the same segment, the settings are changed, or the scope is powered
down.

ETS mode. In this mode, it is possible to increase the effective sampling rate of the
scope when capturing repetitive signals. It is a modified form of block mode.

Rapid block mode. This is a variant of block mode that allows you to capture more
than one waveform at a time with a minimum of delay between captures. You can
use downsampling in this mode if you wish.

Streaming mode. In this mode, data is passed directly to the PC without entire
blocks being stored in the scope's buffer memory. This enables long periods of slow
data collection for chart recorder and data-logging applications. Streaming mode
supports downsampling and triggering, while providing fast streaming at up to:

8-bit mode
 7.8125 MS/s (128 ns per sample) when three or four channels are active
 15.625 MS/s (64 ns per sample) when two channels are active

 31.25 MS/s (32 ns per sample) when one channel is active

12, 14, 15, and 16-bit modes*
 3.906 MS/s (256 ns per sample) when three or four channels are active

 7.8125 MS/s (128 ns per sample) when two channels are active
 15.625 MS/s (64 ns per sample) when one channel is active

* 15-bit mode supports a maximum of two channels. 16-bit mode supports only
one channel.

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it
runs.

For compatibility of programming environments not supporting callback, polling of the
driver is available in block mode.

Note: The Oversampling feature has been replaced by
PS5000A_RATIO_MODE_AVERAGE.

Programming with the PicoScope 5000 Series (A API)8

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3.4.1 Block mode

In block mode, the computer prompts a PicoScope 5000 Series oscilloscope to collect
a block of data into its internal memory. When the oscilloscope has collected the whole
block, it signals that it is ready and then transfers the whole block to the computer's
memory through the USB port.

Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled channels,
so if two channels are enabled, each receives half the memory. These features are
handled transparently by the driver. The block size also depends on the number of
memory segments in use (see ps5000aMemorySegments).

Sampling rate. A PicoScope 5000 Series oscilloscope can sample at a number of
different rates according to the selected timebase and the combination of channels
that are enabled. See the PicoScope 5000 Series User's Guide for the specifications
that apply to your scope model.

Setup time. The driver normally performs a number of setup operations, which can
take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps5000aRunBlock,

ps5000aStop and ps5000aGetValues.

Downsampling. When the data has been collected, you can set an optional
downsampling factor and examine the data. Downsampling is a process that
reduces the amount of data by combining adjacent samples. It is useful for zooming
in and out of the data without having to repeatedly transfer the entire contents of
the scope's buffer to the PC.

Segmented memory. The scope's internal memory can be divided into segments
so that you can capture several waveforms in succession. Configure this using
ps5000aMemorySegments.

Data retention. The data is lost when a new run is started in the same segment,
the settings are changed, or the scope is powered down or the power source is
changed (for flexible power devices).

See Using block mode for programming details.

PicoScope 5000 Series (A API) Programmer's Guide 9

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.4.1.1 Using block mode

You can use block mode with or without aggregation. With aggregation, you need to
set up two buffers for each channel to receive the minimum and maximum values:
see rapid block mode example 1 for an example of this.

Here is the general procedure for reading and displaying data in block mode using a
single memory segment:

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

3. Using ps5000aGetTimebase, select timebases until the required nanoseconds

per sample is located.
4. Use the trigger setup functions ps5000aSetTriggerChannelConditions,

ps5000aSetTriggerChannelDirections and

ps5000aSetTriggerChannelProperties to set up the trigger if required.

5. Start the oscilloscope running using ps5000aRunBlock.

6. Wait until the oscilloscope is ready using the ps5000aBlockReady callback (or

poll using ps5000aIsReady).

7. Use ps5000aSetDataBuffer to tell the driver where your memory buffer is.

For greater efficiency when doing multiple captures, you can call this function
outside the loop, after step 4.

8. Transfer the block of data from the oscilloscope using ps5000aGetValues.

9. Display the data.
10. Stop the oscilloscope using ps5000aStop.

11. Repeat steps 5 to 9.
12. Request new views of stored data using different downsampling parameters: see

Retrieving stored data.
13. Close the device using ps5000aCloseUnit.

Note that if you use ps5000aGetValues or ps5000aStop before the oscilloscope is

ready, no capture will be available and the driver will return
PICO_NO_SAMPLES_AVAILABLE.

Programming with the PicoScope 5000 Series (A API)10

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3.4.1.2 Asynchronous calls in block mode

The ps5000aGetValues function may take a long time to complete if a large amount

of data is being collected. For example, it can take 14 seconds (or several minutes on
USB 1.1) to retrieve the full 512 megasamples (in 8-bit mode) from a PicoScope
5444B using a USB 2.0 connection. To avoid hanging the calling thread, it is possible
to call ps5000aGetValuesAsync instead. This immediately returns control to the

calling thread, which then has the option of waiting for the data or calling
ps5000aStop to abort the operation.

PicoScope 5000 Series (A API) Programmer's Guide 11

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.4.2 Rapid block mode

In normal block mode, the PicoScope 5000 Series scopes collect one waveform at a
time. You start the the device running, wait until all samples are collected by the
device, and then download the data to the PC or start another run. There is a time
overhead of tens of milliseconds associated with starting a run, causing a gap between
waveforms. When you collect data from the device, there is another minimum time
overhead which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to less than
2 microseconds (on fastest timebase).

See Using rapid block mode for details.

3.4.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you
need to set up two buffers for each channel to receive the minimum and maximum
values.

Without aggregation
1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

3. Set the number of memory segments equal to or greater than the number of
captures required using ps5000aMemorySegments. Use

ps5000aSetNoOfCaptures before each run to specify the number of

waveforms to capture.
4. Using ps5000aGetTimebase, select timebases until the required nanoseconds

per sample is located. This will indicate the number of samples per channel
available for each segment.

5. Use the trigger setup functions ps5000aSetTriggerChannelConditions,

ps5000aSetTriggerChannelDirections and

ps5000aSetTriggerChannelProperties to set up the trigger if required.

6. Start the oscilloscope running using ps5000aRunBlock.

THEN EITHER
7a. To obtain data before rapid block capture has finished, call ps5000aStop and

then ps5000aGetNoOfCaptures to find out how many captures were

completed.
OR

7b. Wait until the oscilloscope is ready using ps5000aIsReady.

OR
7c. Wait on the callback function.
8. Use ps5000aSetDataBuffer to tell the driver where your memory buffers are.

Call the function once for each channel/segment combination for which you
require data. For greater efficiency when doing multiple captures, you can call
this function outside the loop, after step 5.

9. Transfer the blocks of data from the oscilloscope using ps5000aGetValuesBulk
(or ps5000aGetValues to retrieve one buffer at a time). These functions stop

the oscilloscope.
10. Retrieve the time offset for each data segment using

ps5000aGetValuesTriggerTimeOffsetBulk64.

11. Display the data.
12. Repeat steps 6 to 11 if necessary.
13. Call ps5000aStop (usually unnecessary as the scope stops automatically in

most cases, but recommended as a precaution).
14. Close the device using ps5000aCloseUnit.

Programming with the PicoScope 5000 Series (A API)12

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 7 above, then proceed as
follows:

8a. Call ps5000aSetDataBuffer or (ps5000aSetDataBuffers) to set up one

pair of buffers for every waveform segment required.
9a. Call ps5000aGetValuesBulk for each pair of buffers.

10a. Retrieve the time offset for each data segment using
ps5000aGetValuesTriggerTimeOffsetBulk64.

Continue from step 11 above.

PicoScope 5000 Series (A API) Programmer's Guide 13

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.4.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device
Channels
Trigger
Number of memory segments (this should be equal or more than the no of captures
required)

// set the number of waveforms to MAX_WAVEFORMS
ps5000aSetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;
ps5000aRunBlock
(

handle,
0, // noOfPreTriggerSamples
10000, // noOfPostTriggerSamples
1, // timebase to be used
&timeIndisposedMs,
0, // segment index
lpReady,
&pParameter

);

Comment: these variables have been set as an example and can be any valid value.
pParameter will be set true by your callback function lpReady.

while (!pParameter) Sleep (0);

int16_t buffer[PS5000A_MAX_CHANNELS][MAX_WAVEFORMS][MAX_SAMPLES];

for (int32_t i = 0; i < 20; i++)
{

for (int32_t c = PS5000A_CHANNEL_A; c <= PS5000A_CHANNEL_B; c++)
{

ps5000aSetDataBuffer
(

handle,
c,
buffer[c][i],
MAX_SAMPLES,
i
PS5000A_RATIO_MODE_NONE

);
}

}

Comments: buffer has been created as a three-dimensional 16-bit integer array, which
will contain 1000 samples as defined by MAX_SAMPLES. There are only 20 buffers set,

but it is possible to set up to the number of captures you have requested.
PS5000A_RATIO_MODE_NONE can be substituted for

PS5000A_RATIO_MODE_AGGREGATE, PS5000A_RATIO_MODE_DECIMATE, or

PS5000A_RATIO_MODE_AVERAGE.

Programming with the PicoScope 5000 Series (A API)14

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

int16_t overflow[MAX_WAVEFORMS];

ps5000aGetValuesBulk
(

handle,
&noOfSamples, // set to MAX_SAMPLES on entering the function
10, // fromSegmentIndex
19, // toSegmentIndex
1, // downsampling ratio
PS5000A_RATIO_MODE_NONE, // downsampling ratio mode
overflow // indices 10 to 19 will be populated

)

Comments: the number of samples could be up to noOfPreTriggerSamples +
noOfPostTriggerSamples, the values set in ps5000aRunBlock. The samples are

always returned from the first sample taken, unlike the ps5000aGetValues function

which allows the sample index to be set. The above segments start at 10 and finish at
19 inclusive. It is possible for the fromSegmentIndex to wrap around to the

toSegmentIndex, by setting the fromSegmentIndex to 98 and the

toSegmentIndex to 7.

int64_t times[MAX_WAVEFORMS];
PS5000A_TIME_UNITS timeUnits[MAX_WAVEFORMS];

ps5000aGetValuesTriggerTimeOffsetBulk64
(

handle,
times, // indices 10 to 19 will be populated
timeUnits, // indices 10 to 19 will be populated
10, // fromSegmentIndex, inclusive
19, // toSegmentIndex, inclusive

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for
the fromSegmentIndex to wrap around to the toSegmentIndex, if the

fromSegmentIndex is set to 98 and the toSegmentIndex to 7.

PicoScope 5000 Series (A API) Programmer's Guide 15

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.4.2.3 Rapid block mode example 2: using aggregation

#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device
Channels
Trigger
Number of memory segments (this should be equal or more than the number of
captures required)

// set the number of waveforms to MAX_WAVEFORMS
ps5000aSetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;
ps5000aRunBlock
(

handle,
0, // noOfPreTriggerSamples,
1000000, // noOfPostTriggerSamples,
1, // timebase to be used,
&timeIndisposedMs,
lpReady,
&pParameter

);

Comments: the set-up for running the device is exactly the same whether or not you
use aggregation when you retrieve the samples.

for (int32_t segment = 10; segment < 20; segment++)
{

for (int32_t c = PS5000A_CHANNEL_A; c <= PS5000A_CHANNEL_D; c++)
{

ps5000aSetDataBuffers
(

handle,
c,
bufferMax[c],
bufferMin[c]
MAX_SAMPLES
1,
PS5000A_RATIO_MODE_AGGREGATE

);
}

Programming with the PicoScope 5000 Series (A API)16

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

ps5000aGetValues
(

handle,
0,
&noOfSamples, // set to MAX_SAMPLES on entering
1000,
downSampleRatioMode, // set to RATIO_MODE_AGGREGATE
index,
overflow

);

ps5000aGetTriggerTimeOffset64
(

handle,
&time,
&timeUnits,
index

)
}

Comments: each waveform is retrieved one at a time from the driver, with an
aggregation of 1000. Since only one waveform will be retrieved at a time, you only
need to set up one pair of buffers; one for the maximum samples and one for the
minimum samples. Again, the buffer sizes are 1000 samples.

3.4.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the
ps5000a set of trigger functions and the ps5000aSetEts function.

Overview. ETS works by capturing several cycles of a repetitive waveform, then
combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The scope hardware accurately
measures the delay, which is a small fraction of a single sampling interval, between
each trigger event and the subsequent sample. The driver then shifts each capture
slightly in time and overlays them so that the trigger points are exactly lined up.
The result is a larger set of samples spaced by a small fraction of the original
sampling interval. The maximum effective sampling rates that can be achieved with
this method are listed in the User's Guide for the scope device.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode calls the ps5000aBlockReady callback function when a new

waveform is ready for collection. The ps5000aGetValues function needs to be

called for the waveform to be retrieved.

Applicability Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.

Aggregation is not supported.

Edge-triggering only.

Auto trigger delay (autoTriggerMilliseconds) is ignored.

PicoScope 5000 Series (A API) Programmer's Guide 17

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.4.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a
single memory segment:

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

3. Use ps5000aGetTimebase to verify the number of samples to be collected.

4. Set up ETS using ps5000aSetEts.

5. Use the trigger setup functions ps5000aSetTriggerChannelDirections and

ps5000aSetTriggerChannelProperties to set up the trigger if required.

6. Start the oscilloscope running using ps5000aRunBlock.

7. Wait until the oscilloscope is ready using the ps5000aBlockReady callback (or

poll using ps5000aIsReady).

8. Use ps5000aSetDataBuffer to tell the driver where to store sampled data.

8a. Use ps5000aSetEtsTimeBuffer or ps5000aSetEtsTimeBuffers to tell the

driver where to store sample times.
9. Transfer the block of data from the oscilloscope using ps5000aGetValues.

10. Display the data.
11. While you want to collect updated captures, repeat steps 7 to 10.
12. Stop the oscilloscope using ps5000aStop.

13. Repeat steps 6 to 12.
14. Close the device using ps5000aCloseUnit.

Programming with the PicoScope 5000 Series (A API)18

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3.4.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when
using block mode. Streaming mode supports downsampling and triggering, while
providing fast streaming at up to 31.25 MS/s (32 ns per sample) when one channel is
active, depending on the computer's performance. This makes it suitable for high-
speed data acquisition, allowing you to capture long data sets limited only by the
computer's memory.

Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1 then only one buffer is used per channel. When
aggregation is set above 1 then two buffers (maximum and minimum) per channel
are used.

Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data if
the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details.

3.4.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channels, ranges and AC/DC coupling using ps5000aSetChannel.

3. Use the trigger setup functions ps5000aSetTriggerChannelDirections and

ps5000aSetTriggerChannelProperties to set up the trigger if required.

4. Call ps5000aSetDataBuffer to tell the driver where your data buffer is.

5. Set up aggregation and start the oscilloscope running using
ps5000aRunStreaming.

6. Call ps5000aGetStreamingLatestValues to get data.

7. Process data returned to your application's function. This example is using Auto
Stop, so after the driver has received all the data points requested by the
application, it stops the device streaming.

8. Call ps5000aStop, even if Auto Stop is enabled.

9. Request new views of stored data using different downsampling parameters: see
Retrieving stored data.

10. Close the device using ps5000aCloseUnit.

PicoScope 5000 Series (A API) Programmer's Guide 19

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Programming with the PicoScope 5000 Series (A API)20

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3.4.5 Retrieving stored data

You can collect data from the ps5000a driver with a different downsampling factor
when ps5000aRunBlock or ps5000aRunStreaming has already been called and has

successfully captured all the data. Use ps5000aGetValuesAsync.

PicoScope 5000 Series (A API) Programmer's Guide 21

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.5 Timebases

The API allows you to select any of 232 different timebases based on the maximum
sampling rate* of your oscilloscope. The timebases allow slow enough sampling in
block mode to overlap the streaming sample intervals, so that you can make a smooth
transition between block mode and streaming mode. Calculate the timebase using the
ps5000aGetTimebase call. Accepted timebases for each resolution mode are:

8-bit resolution
Timebase Sample interval formula Sample interval

examples
Notes

0

2timebase / 1,000,000,000

1 ns Only one channel enabled

1 2 ns

2 4 ns

3 to 232–1
(timebase–2) /
125,000,000

3 => 8 ns
...
232–1 => ~ 34.36 s

12-bit resolution
Timebase** Sample interval formula Sample interval

examples
Notes

1

2(timebase–1) / 500,000,000

2 ns Only one channel enabled

2 4 ns

3 8 ns

4 to 232–2
(timebase–3) /
62,500,000

4 => 16 ns
...
232–2 => ~ 68.72 s

14, 15-bit resolutions
Timebase† Sample interval formula Sample interval

examples
Notes

3 to 232–1
(timebase–2) /
125,000,000

3 => 8 ns
4 => 16 ns
5 => 24 ns
...
232–1 => ~ 34.36 s

Only one channel enabled

16-bit resolution
Timebase‡ Sample interval formula Sample interval

examples
Notes

4 to 232–2
(timebase–3) /
62,500,000

4 => 16 ns
5 => 32 ns
6 => 48 ns
...
232–2 => ~ 68.72 s

Only one channel enabled

* The fastest available sampling rate may depend on which channels are enabled
and on the sampling mode. Please refer to the oscilloscope data sheet for sampling
rate specifications. In streaming mode, the speed of the USB port may affect the rate
of data transfer.
** Timebase 0 is not available in 12-bit resolution mode.
† Timebases 0, 1 and 2 are not available in 14 and 15-bit resolution modes.
‡ Timebases 0, 1, 2 and 3 are not available in 16-bit resolution mode.

ETS mode
In ETS mode the sample time is not set according to the above tables, but is instead
calculated and returned by ps5000aSetEts.

Programming with the PicoScope 5000 Series (A API)22

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

3.6 Power options
The 4-channel 5000 Series oscilloscopes allow you to choose from two different
methods of powering your device. Our flexible power feature offers the choice of
powering your device using a single-headed USB cable and provided power supply
unit, or using our double-headed USB cable to draw power from two powered USB
ports for use in 2-channel mode. If the power source is changed (i.e. AC adaptor being
connected or disconnected) while the oscilloscope is in operation, the oscilloscope will
restart automatically and any unsaved data will be lost.

For further information on these options, refer to the documentation included with
your device.

Power options functions

The following functions support the flexible power feature:

 ps5000aChangePowerSource
 ps5000aCurrentPowerSource

If you want the device to run on USB power only, instruct the driver by calling
ps5000aChangePowerSource after calling ps5000aOpenUnit. If

ps5000aOpenUnit is called without the power supply connected, the driver returns

PICO_POWER_SUPPLY_NOT_CONNECTED. If the supply is connected or disconnected

during use, the driver will return the relevant status code and you must then call

ps5000aChangePowerSource to continue running the scope.

PicoScope 5000 Series (A API) Programmer's Guide 23

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

3.7 Combining several oscilloscopes
It is possible to collect data using up to 64 PicoScope 5000 Series oscilloscopes at the
same time, depending on the capabilities of the PC. Each oscilloscope must be
connected to a separate USB port. The ps5000aOpenUnit function returns a handle

to an oscilloscope. All the other functions require this handle for oscilloscope
identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps5000aBlockReady(...)
// define callback function specific to application

handle1 = ps5000aOpenUnit()
handle2 = ps5000aOpenUnit()

ps5000aSetChannel(handle1)
// set up unit 1
ps5000aRunBlock(handle1)

ps5000aSetChannel(handle2)
// set up unit 2
ps5000aRunBlock(handle2)

// data will be stored in buffers
// and application will be notified using callback

ready = FALSE
while not ready

ready = handle1_ready
ready &= handle2_ready

API functions24

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4 API functions
The ps5000a API exports the following functions for you to use in your own
applications. All functions are C functions using the standard call naming convention
(__stdcall). They are all exported with both decorated and undecorated names.

ps5000aBlockReady indicate when block-mode data ready
ps5000aChangePowerSource configures the unit's power source
ps5000aCloseUnit close a scope device
ps5000aCurrentPowerSource indicate the current power state of the device
ps5000aDataReady indicate when post-collection data ready
ps5000aEnumerateUnits find all connected oscilloscopes
ps5000aFlashLed flash the front-panel LED
ps5000aGetAnalogueOffset query the permitted analog offset range
ps5000aGetChannelInformation queries which ranges are available on a device
ps5000aGetDeviceResolution retrieves the resolution specified device will run
ps5000aGetMaxDownSampleRatio query the aggregation ratio for data
ps5000aGetMaxSegments query the maximum number of segments
ps5000aGetNoOfCaptures find out how many captures are available
ps5000aGetNoOfProcessedCaptures query number of captures processed
ps5000aGetStreamingLatestValues get streaming data while scope is running
ps5000aGetTimebase find out what timebases are available
ps5000aGetTimebase2 find out what timebases are available
ps5000aGetTriggerTimeOffset find out when trigger occurred (32-bit)
ps5000aGetTriggerTimeOffset64 find out when trigger occurred (64-bit)
ps5000aGetUnitInfo read information about scope device
ps5000aGetValues retrieve block-mode data with callback
ps5000aGetValuesAsync retrieve streaming data with callback
ps5000aGetValuesBulk retrieve data in rapid block mode
ps5000aGetValuesOverlapped set up data collection ahead of capture
ps5000aGetValuesOverlappedBulk set up data collection in rapid block mode
ps5000aGetValuesTriggerTimeOffsetBulk get rapid-block waveform timings (32-bit)
ps5000aGetValuesTriggerTimeOffsetBulk64 get rapid-block waveform timings (64-bit)
ps5000aIsReady poll driver in block mode
ps5000aIsTriggerOrPulseWidthQualifierEnabled find out whether trigger is enabled
ps5000aMaximumValue query the max. ADC count in GetValues calls
ps5000aMemorySegments divide scope memory into segments
ps5000aMinimumValue query the min. ADC count in GetValues calls
ps5000aNoOfStreamingValues get number of samples in streaming mode
ps5000aOpenUnit open a scope device
ps5000aOpenUnitAsync open a scope device without waiting
ps5000aOpenUnitProgress check progress of OpenUnit call
ps5000aPingUnit check communication with device
ps5000aRunBlock start block mode
ps5000aRunStreaming start streaming mode
ps5000aSetBandwidthFilter specifies the bandwidth limit
ps5000aSetChannel set up input channels
ps5000aSetDataBuffer register data buffer with driver
ps5000aSetDataBuffers register aggregated data buffers with driver
ps5000aSetDeviceResolution sets the resolution a specified device will run
ps5000aSetEts set up equivalent-time sampling
ps5000aSetEtsTimeBuffer set up buffer for ETS timings (64-bit)
ps5000aSetEtsTimeBuffers set up buffer for ETS timings (32-bit)
ps5000aSetNoOfCaptures set number of captures to collect in one run
ps5000aSetPulseWidthQualifier set up pulse width triggering
ps5000aSetSigGenArbitrary set up arbitrary waveform generator
ps5000aSetSigGenBuiltIn set up standard signal generator
ps5000aSetSigGenPropertiesArbitrary change AWG settings
ps5000aSetSigGenPropertiesBuiltIn change function generator settings
ps5000aSetSimpleTrigger set up level triggers only
ps5000aSetTriggerChannelConditions specify which channels to trigger on
ps5000aSetTriggerChannelDirections set up signal polarities for triggering
ps5000aSetTriggerChannelProperties set up trigger thresholds

PicoScope 5000 Series (A API) Programmer's Guide 25

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

ps5000aSetTriggerDelay set up post-trigger delay
ps5000aSigGenArbitraryMinMaxValues get AWG parameters
ps5000aSigGenFrequencyToPhase convert frequency to phase count
ps5000aSigGenSoftwareControl trigger the signal generator
ps5000aStop stop data capture
ps5000aStreamingReady indicate when streaming-mode data ready

API functions26

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.1 ps5000aBlockReady (callback)
typedef void (CALLBACK *ps5000aBlockReady)
(

int16_t handle,
PICO_STATUS status,
void * pParameter

)

This callback function is part of your application. You register it with the ps5000a
driver using ps5000aRunBlock, and the driver calls it back when block-mode data is

ready. You can then download the data using the ps5000aGetValues function.

Applicability Block mode only

Arguments handle, the handle of the device returning the samples.

status, indicates whether an error occurred during collection of the

data.

* pParameter, a void pointer passed from ps5000aRunBlock.

Your callback function can write to this location to send any data,
such as a status flag, back to your application.

Returns nothing

PicoScope 5000 Series (A API) Programmer's Guide 27

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.2 ps5000aChangePowerSource
PICO_STATUS ps5000aChangePowerSource
(

int16_t handle,
PICO_STATUS powerstate

)

This function selects the power supply mode. If USB power is required, you must
explicitly allow it by calling this function. If the AC power adapter is connected or
disconnected during use, you must also call this function. If you change power source
to PICO_POWER_SUPPLY_NOT_CONNECTED and channels C/D are currently enabled,

they will be switched off. If a trigger is set using channels C/D the trigger settings for
those channels will also be removed.

Applicability All modes. 4-Channel 5000 A and B Series oscilloscopes only

Arguments handle, the handle of the device.

powerstate, the required state of the unit. Either

PICO_POWER_SUPPLY_CONNECTED or

PICO_POWER_SUPPLY_NOT_CONNECTED.

Returns PICO_OK
PICO_POWER_SUPPLY_REQUEST_INVALID
PICO_INVALID_PARAMETER
PICO_NOT_RESPONDING
PICO_INVALID_HANDLE

API functions28

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.3 ps5000aCloseUnit
PICO_STATUS ps5000aCloseUnit
(

int16_t handle
)

This function shuts down the PicoScope 5000 Series oscilloscope.

Applicability All modes

Arguments handle, the handle, returned by ps5000aOpenUnit, of the scope

device to be closed.

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 29

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.4 ps5000aCurrentPowerSource
PICO_STATUS ps5000aCurrentPowerSource
(

int16_t handle
)

This function returns the current power state of the device.

Applicability All modes. 4-Channel 5000 A and B Series oscilloscopes only

Arguments handle, the handle of the device

Returns PICO_INVALID_HANDLE - handle of the device is not recognised.

PICO_POWER_SUPPLY_CONNECTED - if the device is powered by the

AC adapter.
PICO_POWER_SUPPLY_NOT_CONNECTED - if the device is powered by

the USB cable.

API functions30

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.5 ps5000aDataReady (callback)
typedef void (CALLBACK *ps5000aDataReady)
(

int16_t handle,
PICO_STATUS status,
uint32_t noOfSamples,
int16_t overflow,
void * pParameter

)

This is a callback function that you write to collect data from the driver. You supply a
pointer to the function when you call ps5000aGetValuesAsync, and the driver calls

your function back when the data is ready.

Applicability All modes

Arguments handle, the handle of the device returning the samples.

status, a PICO_STATUS code returned by the driver.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicates whether an overvoltage has

occurred and on which channels. It is a bit field with bit 0
representing Channel A.

* pParameter, a void pointer passed from

ps5000aGetValuesAsync. The callback function can write to this

location to send any data, such as a status flag, back to the
application. The data type is defined by the application programmer.

Returns nothing

PicoScope 5000 Series (A API) Programmer's Guide 31

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.6 ps5000aEnumerateUnits
PICO_STATUS ps5000aEnumerateUnits
(

int16_t * count,
int8_t * serials,
int16_t * serialLth

)

This function counts the number of PicoScope 5000 Series units connected to the
computer, and returns a list of serial numbers as a string. Note that this function will
only detect devices that are not yet being controlled by an application.

Applicability All modes

Arguments * count, on exit, the number of PicoScope 5000 Series units found

* serials, on exit, a list of serial numbers separated by commas

and terminated by a final null. Example:
AQ005/139,VDR61/356,ZOR14/107. Can be NULL on entry if serial

numbers are not required.

* serialLth, on entry, the length of the int8_t buffer pointed to

by serials; on exit, the length of the string written to serials

Returns PICO_OK
PICO_BUSY
PICO_NULL_PARAMETER
PICO_FW_FAIL
PICO_CONFIG_FAIL
PICO_MEMORY_FAIL
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA

API functions32

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.7 ps5000aFlashLed
PICO_STATUS ps5000aFlashLed
(

int16_t handle,
int16_t start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps5000aRunStreaming and ps5000aRunBlock cancel any flashing

started by this function. It is not possible to set the LED to be constantly illuminated,
as this state is used to indicate that the scope has not been initialized.

Applicability All modes

Arguments handle, the handle of the scope device

start, the action required:

< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
> 0 : flash the LED start times. If the LED is already flashing

on entry to this function, the flash count will be reset to
start.

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_BUSY
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

PicoScope 5000 Series (A API) Programmer's Guide 33

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.8 ps5000aGetAnalogueOffset
PICO_STATUS ps5000aGetAnalogueOffset
(

int16_t handle,
PS5000A_RANGE range,
PS5000A_COUPLING coupling,
float * maximumVoltage,
float * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a
specific voltage range.

Applicability Al models

Arguments handle, the value returned from opening the device.

range, the voltage range to be used when gathering the min and

max information.

coupling, the type of AC/DC coupling used.

* maximumVoltage, a pointer to a float, an out parameter set to

the maximum voltage allowed for the range, may be NULL.

* minimumVoltage, a pointer to a float, an out parameter set to

the minimum voltage allowed for the range, may be NULL.

If both maximumVoltage and minimumVoltage are set to NULL,

the driver will return PICO_NULL_PARAMETER.
Returns PICO_OK

PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_INVALID_VOLTAGE_RANGE
PICO_NULL_PARAMETER

API functions34

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.9 ps5000aGetChannelInformation
PICO_STATUS ps5000aGetChannelInformation
(

int16_t handle,
PS5000A_CHANNEL_INFO info,
int32_t probe,
int32_t * ranges,
int32_t * length,
int32_t channels

)

This function queries which ranges are available on a scope device.

Applicability All modes

Arguments handle, the handle of the required device.

info, the type of information required. The following value is

currently supported:
PS5000A_CI_RANGES

probe, not used, must be set to 0.

* ranges, an array that will be populated with available

PS5000A_RANGE values for the given info. If NULL,

length is set to the number of ranges available.

* length, on input: the length of the ranges array; on output:

the number of elements written to the ranges array.

channels, the channel for which the information is required.

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_BUSY
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING
PICO_NULL_PARAMETER
PICO_INVALID_CHANNEL
PICO_INVALID_INFO

PicoScope 5000 Series (A API) Programmer's Guide 35

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.10 ps5000aGetDeviceResolution
PICO_STATUS ps5000aGetDeviceResolution
(

int16_t handle,
PS5000A_DEVICE_RESOLUTION * resolution

)

This function retrieves the resolution the specified device will run in.

Applicability All modes

Arguments handle, the handle of the required device

* resolution, returns the resolution of the device, values are one

of the PS5000A_DEVICE_RESOLUTION.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NULL_PARAMETER

API functions36

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.11 ps5000aGetMaxDownSampleRatio
PICO_STATUS ps5000aGetMaxDownSampleRatio
(

int16_t handle,
uint32_t noOfUnaggregatedSamples,
uint32_t * maxDownSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex

)

This function returns the maximum downsampling ratio that can be used for a given
number of samples in a given downsampling mode.

Applicability All modes

Arguments handle, the handle of the required device

noOfUnaggregatedSamples, the number of unprocessed samples

to be downsampled

* maxDownSampleRatio: the maximum possible downsampling

ratio output

downSampleRatioMode: the downsampling mode. See
ps5000aGetValues

segmentIndex, the memory segment where the data is stored

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

PicoScope 5000 Series (A API) Programmer's Guide 37

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.12 ps5000aGetMaxSegments
PICO_STATUS ps5000aGetMaxSegments
(

int16_t handle,
uint32_t * maxsegments

)

This function returns the maximum number of segments allowed for the opened
device. Refer to ps5000aMemorySegments for specific figures.

Applicability All modes

Arguments handle, the value returned from opening the device.

* maxsegments, (output) the maximum number of segments

allowed.
Returns PICO_OK

PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NULL_PARAMETER

API functions38

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.13 ps5000aGetNoOfCaptures
PICO_STATUS ps5000aGetNoOfCaptures
(

int16_t handle,
uint32_t * nCaptures

)

This function returns the number of captures the device has made in rapid block mode,
since you called ps5000aRunBlock. You can call ps5000aGetNoOfCaptures during

device capture, after collection has completed or after interrupting waveform collection
by calling ps5000aStop. The returned value (nCaptures) can then be used to iterate

through the number of segments using ps5000aGetValues, or in a single call to

ps5000aGetValuesBulk, where it is used to calculate the toSegmentIndex
parameter.

Applicability Rapid block mode

Arguments handle, handle of the required device.

* nCaptures, output: the number of available captures that has

been collected from calling ps5000aRunBlock.

Returns PICO_OK
PICO_DRIVER_FUNCTION
PICO_INVALID_HANDLE
PICO_NOT_RESPONDING
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

PicoScope 5000 Series (A API) Programmer's Guide 39

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.14 ps5000aGetNoOfProcessedCaptures
PICO_STATUS ps5000aGetNoOfProcessedCaptures
(

int16_t handle,
uint32_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid
block mode. It enables your application to start processing captured data while the
driver is still transferring later captures from the device to the computer.

The function returns the number of captures the driver has processed since you called
ps5000aRunBlock. It is for use in rapid block mode, alongside the

ps5000aGetValuesOverlappedBulk function, when the driver is set to transfer

data from the device automatically as soon as the ps5000aRunBlock function is

called. You can call ps5000aGetNoOfProcessedCaptures during device capture,

after collection has completed or after interrupting waveform collection by calling
ps5000aStop.

The returned value (nProcessedCaptures) can then be used to iterate through the

number of segments using ps5000aGetValues, or in a single call to

ps5000aGetValuesBulk, where it is used to calculate the toSegmentIndex
parameter.

When capture is stopped
If nProcessedCaptures = 0, you will also need to call ps5000aGetNoOfCaptures,

in order to determine how many waveform segments were captured, before calling
ps5000aGetValues or ps5000aGetValuesBulk.

Applicability Rapid block mode, using ps5000aGetValuesOverlapped.

Arguments handle: handle of the required device.

* nProcessedCaptures, output: the number of available

captures that has been collected from calling ps5000aRunBlock.

Returns PICO_OK
PICO_DRIVER_FUNCTION
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

API functions40

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.15 ps5000aGetStreamingLatestValues
PICO_STATUS ps5000aGetStreamingLatestValues
(

int16_t handle,
ps5000aStreamingReady lpPs5000aReady,
void * pParameter

)

This function instructs the driver to return the next block of values to your
ps5000aStreamingReady callback function. You must have previously called

ps5000aRunStreaming beforehand to set up streaming.

Applicability Streaming mode only

Arguments handle, the handle of the required device.

lpPs5000AReady, a pointer to your ps5000aStreamingReady
callback function.

* pParameter, a void pointer that will be passed to the

ps5000aStreamingReady callback function. The callback function

may optionally use this pointer to return information to the
application.

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_INVALID_CALL
PICO_BUSY
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 41

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.16 ps5000aGetTimebase
PICO_STATUS ps5000aGetTimebase
(

int16_t handle,
uint32_t timebase,
int32_t noSamples,
int32_t * timeIntervalNanoseconds,
int32_t * maxSamples,
uint32_t segmentIndex

)

This function calculates the sampling rate and maximum number of samples for a
given timebase under the specified conditions. The result will depend on the number of
channels enabled by the last call to ps5000aSetChannel.

This function is provided for use with programming languages that do not support the
float data type. The value returned in the timeIntervalNanoseconds argument is

restricted to integers. If your programming language supports the float type, then

we recommend that you use ps5000aGetTimebase2 instead.

To use ps5000aGetTimebase or ps5000aGetTimebase2, first estimate the

timebase number that you require using the information in the timebase guide. Next,
call one of these functions with the timebase that you have just chosen and verify that
the timeIntervalNanoseconds argument that the function returns is the value that

you require. You may need to iterate this process until you obtain the time interval
that you need.

Applicability All modes

Arguments handle, the handle of the required device.

timebase, see timebase guide

noSamples, the number of samples required.

* timeIntervalNanoseconds, on exit, the time interval between

readings at the selected timebase. Use NULL if not required.

* maxSamples, on exit, the maximum number of samples

available. The scope reserves some memory for internal overheads
and this may vary depending on the number of segments, number of
channels enabled, and the timebase chosen. Use NULL if not
required.

segmentIndex, the index of the memory segment to use.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SAMPLES
PICO_INVALID_CHANNEL
PICO_INVALID_TIMEBASE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_DRIVER_FUNCTION

API functions42

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.17 ps5000aGetTimebase2
PICO_STATUS ps5000aGetTimebase2
(

int16_t handle,
uint32_t timebase,
int32_t noSamples,
float * timeIntervalNanoseconds,
int32_t * maxSamples,
uint32_t segmentIndex

)

This function is an upgraded version of ps5000aGetTimebase, and returns the time

interval as a float rather than an int32_t. This allows it to return sub-nanosecond

time intervals. See ps5000aGetTimebase for a full description.

Applicability All modes

Arguments * timeIntervalNanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

All other arguments: see ps5000aGetTimebase.

Returns See ps5000aGetTimebase.

PicoScope 5000 Series (A API) Programmer's Guide 43

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.18 ps5000aGetTriggerTimeOffset
PICO_STATUS ps5000aGetTriggerTimeOffset
(

int16_t handle,
uint32_t * timeUpper,
uint32_t * timeLower,
PS5000A_TIME_UNITS * timeUnits,
uint32_t segmentIndex

)

This function gets the trigger time offset for waveforms obtained in block mode or
rapid block mode. The trigger time offset is an adjustment value used for correcting
jitter in the waveform, and is intended mainly for applications that wish to display the
waveform with reduced jitter. The offset is zero if the waveform crosses the threshold
at the trigger sampling instant, or a positive or negative value if jitter correction is
required. The value should be added to the nominal trigger time to get the corrected
trigger time.

Call this function after data has been captured or when data has been retrieved from a
previous capture.

This function is provided for use in programming environments that do not support 64-
bit integers. Another version of this function, ps5000aGetTriggerTimeOffset64, is

available that returns the time as a single 64-bit value.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device

* timeUpper, on exit, the upper 32 bits of the time at which the

trigger point occurred

* timeLower, on exit, the lower 32 bits of the time at which the

trigger point occurred

* timeUnits, returns the time units in which timeUpper and

timeLower are measured. The allowable values are:
PS5000A_FS
PS5000A_PS
PS5000A_NS
PS5000A_US
PS5000A_MS
PS5000A_S

segmentIndex, the number of the memory segment for which the

information is required.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NOT_USED_IN_THIS_CAPTURE_MODE
PICO_NOT_RESPONDING
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

API functions44

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.19 ps5000aGetTriggerTimeOffset64
PICO_STATUS ps5000aGetTriggerTimeOffset64
(

int16_t handle,
int64_t * time,
PS5000A_TIME_UNITS * timeUnits,
uint32_t segmentIndex

)

This function gets the trigger time offset for a waveform. It is equivalent to
ps5000aGetTriggerTimeOffset except that the time offset is returned as a single

64-bit value instead of two 32-bit values.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device

* time, on exit, the time at which the trigger point occurred

* timeUnits, on exit, the time units in which time is measured.

The possible values are:
PS5000A_FS
PS5000A_PS
PS5000A_NS
PS5000A_US
PS5000A_MS
PS5000A_S

segmentIndex, the number of the memory segment for which the

information is required

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NOT_USED_IN_THIS_CAPTURE_MODE
PICO_NOT_RESPONDING
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 45

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.20 ps5000aGetUnitInfo
PICO_STATUS ps5000aGetUnitInfo
(

int16_t handle,
int8_t * string,
int16_t stringLength,
int16_t * requiredSize,
PICO_INFO info

)

This function retrieves information about the specified oscilloscope. If the device fails
to open, or no device is opened only the driver version is available.

Applicability All modes

Arguments handle, the handle of the device from which information is

required. If an invalid handle is passed, only the driver versions can
be read.

* string, on exit, the unit information string selected specified by

the info argument. If string is NULL, only requiredSize is

returned.

stringLength, the maximum number of 8-bit integers (int8_t)

that may be written to string.

* requiredSize, on exit, the required length of the string
array.

info, a number specifying what information is required. The

possible values are listed in the table below.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_INVALID_INFO
PICO_INFO_UNAVAILABLE
PICO_DRIVER_FUNCTION

API functions46

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

info Example
0 PICO_DRIVER_VERSION

Version number of ps5000a.dll
1,0,0,1

1 PICO_USB_VERSION
Type of USB connection to device: 1.1, 2.0 or 3.0

2.0

2 PICO_HARDWARE_VERSION
Hardware version of device

1

3 PICO_VARIANT_INFO
Variant number of device

5444B

4 PICO_BATCH_AND_SERIAL
Batch and serial number of device

KJL87/6

5 PICO_CAL_DATE
Calibration date of device

30Sep09

6 PICO_KERNEL_VERSION
Version of kernel driver

1.0

7 PICO_DIGITAL_HARDWARE_VERSION
Hardware version of the digital section

1

8 PICO_ANALOGUE_HARDWARE_VERSION
Hardware version of the analog section

1

PicoScope 5000 Series (A API) Programmer's Guide 47

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.21 ps5000aGetValues
PICO_STATUS ps5000aGetValues
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex,
int16_t * overflow

)

This function returns block-mode data from the oscilloscope's buffer memory, with or
without downsampling, starting at the specified sample number. It is used to get the
stored data after data collection has stopped.

Note that if you are using block mode and call this function before the oscilloscope is
ready, no capture will be available and the driver will return
PICO_NO_SAMPLES_AVAILABLE.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device.

startIndex, a zero-based index that indicates the start point for

data collection. It is measured in sample intervals from the start of
the buffer.

* noOfSamples, on entry, the number of samples required. On

exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested, and the data retrieved
starts at startIndex.

downSampleRatio, the downsampling factor that will be applied to

the raw data.

downSampleRatioMode, which downsampling mode to use. The

available values are:
PS5000A_RATIO_MODE_NONE (downSampleRatio is ignored)
PS5000A_RATIO_MODE_AGGREGATE
PS5000A_RATIO_MODE_AVERAGE
PS5000A_RATIO_MODE_DECIMATE

AGGREGATE, AVERAGE, DECIMATE are single-bit constants that can

be ORed to apply multiple downsampling modes to the same data.

segmentIndex, the zero-based number of the memory segment

where the data is stored.

* overflow, on exit, a set of flags that indicate whether an

overvoltage has occurred on any of the channels. It is a bit field with
bit 0 denoting Channel A.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_NO_SAMPLES_AVAILABLE

API functions48

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_STARTINDEX_INVALID
PICO_ETS_NOT_RUNNING
PICO_BUFFERS_NOT_SET
PICO_INVALID_PARAMETER
PICO_TOO_MANY_SAMPLES
PICO_DATA_NOT_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_NOT_RESPONDING
PICO_MEMORY
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

4.21.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the
PicoScope 5000 Series oscilloscopes. The downsampling is done at high speed by
dedicated hardware inside the scope, making your application faster and more
responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions
such as ps5000aGetValues. The following modes are available:

PS5000A_RATIO_MODE_NONE No downsampling. Returns raw data
values.

PS5000A_RATIO_MODE_AGGREGATE Reduces every block of n values to just two
values: a minimum and a maximum. The
minimum and maximum values are
returned in two separate buffers.

PS5000A_RATIO_MODE_AVERAGE Reduces every block of n values to a single
value representing the average (arithmetic
mean) of all the values.

PS5000A_RATIO_MODE_DECIMATE Reduces every block of n values to just the
first value in the block, discarding all the
other values.

PicoScope 5000 Series (A API) Programmer's Guide 49

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.22 ps5000aGetValuesAsync
PICO_STATUS ps5000aGetValuesAsync
(

int16_t handle,
uint32_t startIndex,
uint32_t noOfSamples,
uint32_t downSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex,
void * lpDataReady,
void * pParameter

)

This function returns data either with or without downsampling, starting at the
specified sample number. It is used to get the stored data from the driver after data
collection has stopped. It returns the data using a callback.

Applicability Streaming mode and block mode

Arguments handle, the handle of the required device

startIndex,
noOfSamples,
downSampleRatio,
downSampleRatioMode,
segmentIndex: see ps5000aGetValues

* lpDataReady, a pointer to the user-supplied function that will

be called when the data is ready. This will be a ps5000aDataReady
function for block-mode data or a ps5000aStreamingReady
function for streaming-mode data.

* pParameter, a void pointer that will be passed to the callback

function. The data type is determined by the application.

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_STARTINDEX_INVALID
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_PARAMETER
PICO_DATA_NOT_AVAILABLE
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_DRIVER_FUNCTION

API functions50

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.23 ps5000aGetValuesBulk
PICO_STATUS ps5000aGetValuesBulk
(

int16_t handle,
uint32_t * noOfSamples,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex,
uint32_t downSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms
must have been collected sequentially and in the same run.

Applicability Rapid block mode

Arguments handle, the handle of the device

* noOfSamples, on entry, the number of samples required; on

exit, the actual number retrieved. The number of samples retrieved
will not be more than the number requested. The data retrieved
always starts with the first sample captured.

fromSegmentIndex, the first segment from which the waveform

should be retrieved

toSegmentIndex, the last segment from which the waveform

should be retrieved

downSampleRatio,
downSampleRatioMode: see ps5000aGetValues

* overflow, an array of integers equal to or larger than the

number of waveforms to be retrieved. Each segment index has a
corresponding entry in the overflow array, with overflow[0]
containing the flags for the segment numbered fromSegmentIndex
and the last element in the array containing the flags for the segment
numbered toSegmentIndex. Each element in the array is a bit field

as described under ps5000aGetValues.

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_INVALID_SAMPLERATIO
PICO_ETS_NOT_RUNNING
PICO_BUFFERS_NOT_SET
PICO_TOO_MANY_SAMPLES
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 51

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.24 ps5000aGetValuesOverlapped
PICO_STATUS ps5000aGetValuesOverlapped
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
uint32_t segmentIndex,
int16_t * overflow

)

This function allows you to make a deferred data-collection request in block mode. The
request will be executed, and the arguments validated, when you call
ps5000aRunBlock. The advantage of this function is that the driver makes contact

with the scope only once, when you call ps5000aRunBlock, compared with the two

contacts that occur when you use the conventional ps5000aRunBlock,

ps5000aGetValues calling sequence. This slightly reduces the dead time between

successive captures in block mode.

After calling ps5000aRunBlock, you can optionally use ps5000aGetValues to

request further copies of the data. This might be required if you wish to display the
data with different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability Block mode

Arguments handle,
startIndex,
* noOfSamples,
downSampleRatio,
downSampleRatioMode,
segmentIndex: see ps5000aGetValues

* overflow: see ps5000aGetValuesBulk

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

4.24.1 Using the GetValuesOverlapped functions

1. Open the oscilloscope using ps5000aOpenUnit.

2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.

3. Using ps5000aGetTimebase, select timebases until the required nanoseconds

per sample is located.
4. Use the trigger setup functions ps5000aSetTriggerChannelConditions,

ps5000aSetTriggerChannelDirections and

ps5000aSetTriggerChannelProperties to set up the trigger if required.

5. Use ps5000aSetDataBuffer to tell the driver where your memory buffer is.

6. Set up the transfer of the block of data from the oscilloscope using
ps5000aGetValuesOverlapped.

7. Start the oscilloscope running using ps5000aRunBlock.

8. Wait until the oscilloscope is ready using the ps5000aBlockReady callback (or

poll using ps5000aIsReady).

API functions52

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

9. Display the data.
10. Repeat steps 7 to 9 if needed.
11. Stop the oscilloscope by calling ps5000aStop.

A similar procedure can be used with rapid block mode using the
ps5000aGetValuesOverlappedBulk function.

PicoScope 5000 Series (A API) Programmer's Guide 53

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.25 ps5000aGetValuesOverlappedBulk
PICO_STATUS ps5000aGetValuesOverlappedBulk
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex,
int16_t * overflow

)

This function allows you to make a deferred data-collection request in rapid block
mode. The request will be executed, and the arguments validated, when you call
ps5000aRunBlock. The advantage of this method is that the driver makes contact

with the scope only once, when you call ps5000aRunBlock, compared with the two

contacts that occur when you use the conventional ps5000aRunBlock,

ps5000aGetValuesBulk calling sequence. This slightly reduces the dead time

between successive captures in rapid block mode.

After calling ps5000aRunBlock, you can optionally use ps5000aGetValues to

request further copies of the data. This might be required if you wish to display the
data with different data reduction settings.

For more information, see Using the GetValuesOverlapped functions.

Applicability Rapid block mode

Arguments handle,
startIndex,
* noOfSamples,
downSampleRatio,
downSampleRatioMode: see ps5000aGetValues

fromSegmentIndex,
toSegmentIndex,
* overflow, see ps5000aGetValuesBulk

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

API functions54

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.26 ps5000aGetValuesTriggerTimeOffsetBulk
PICO_STATUS ps5000aGetValuesTriggerTimeOffsetBulk
(

int16_t handle,
uint32_t * timesUpper,
uint32_t * timesLower,
PS5000A_TIME_UNITS * timeUnits,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block
mode or rapid block mode. It is a more efficient alternative to calling
ps5000aGetTriggerTimeOffset once for each waveform required. See

ps5000aGetTriggerTimeOffset for an explanation of trigger time offsets.

There is another version of this function,
ps5000aGetValuesTriggerTimeOffsetBulk64, that returns trigger time offsets as

64-bit values instead of pairs of 32-bit values.

PicoScope 5000 Series (A API) Programmer's Guide 55

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Applicability Rapid block mode

Arguments handle, the handle of the device

* timesUpper, an array of integers. On exit, the most significant

32 bits of the time offset for each requested segment index.
times[0] will hold the fromSegmentIndex time offset and the last

times index will hold the toSegmentIndex time offset. The array

must be long enough to hold the number of requested times.

* timesLower, an array of integers. On exit, the least significant

32 bits of the time offset for each requested segment index.
times[0] will hold the fromSegmentIndex time offset and the last

times index will hold the toSegmentIndex time offset. The array

size must be long enough to hold the number of requested times.

* timeUnits, an array of integers. The array must be long enough

to hold the number of requested times. On exit, timeUnits[0] will

contain the time unit for fromSegmentIndex and the last element

will contain the time unit for toSegmentIndex. Refer to

ps5000aGetTriggerTimeOffset for specific figures

fromSegmentIndex, the first segment for which the time offset is

required

toSegmentIndex, the last segment for which the time offset is

required. If toSegmentIndex is less than fromSegmentIndex then

the driver will wrap around from the last segment to the first.

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_NOT_USED_IN_THIS_CAPTURE_MODE
PICO_NOT_RESPONDING
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

API functions56

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.27 ps5000aGetValuesTriggerTimeOffsetBulk64
PICO_STATUS ps5000aGetValuesTriggerTimeOffsetBulk64
(

int16_t handle,
int64_t * times,
PS5000A_TIME_UNITS * timeUnits,
uint32_t fromSegmentIndex,
uint32_t toSegmentIndex

)

This function retrieves the 64-bit time offsets for waveforms captured in rapid block
mode.

A 32-bit version of this function, ps5000aGetValuesTriggerTimeOffsetBulk, is

available for use with programming languages that do not support 64-bit integers. See
that function for an explanation of waveform time offsets.

Applicability Rapid block mode

Arguments handle, the handle of the device

* times, an array of integers. On exit, this will hold the time offset

for each requested segment index. times[0] will hold the time offset

for fromSegmentIndex, and the last times index will hold the time

offset for toSegmentIndex. The array must be long enough to hold

the number of times requested.

* timeUnits, an array of integers long enough to hold the number

of requested times. timeUnits[0] will contain the time unit for

fromSegmentIndex, and the last element will contain the

toSegmentIndex. Refer to ps5000aGetTriggerTimeOffset64 for

specific figures.

fromSegmentIndex, the first segment for which the time offset is

required. The results for this segment will be placed in times[0] and

timeUnits[0].

toSegmentIndex, the last segment for which the time offset is

required. The results for this segment will be placed in the last
elements of the times and timeUnits arrays. If toSegmentIndex
is less than fromSegmentIndex then the driver will wrap around

from the last segment to the first.

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_NOT_USED_IN_THIS_CAPTURE_MODE
PICO_NOT_RESPONDING
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 57

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.28 ps5000aIsReady
PICO_STATUS ps5000aIsReady
(

int16_t handle,
int16_t * ready

)

This function may be used instead of a callback function to receive data from
ps5000aRunBlock. To use this method, pass a NULL pointer as the lpReady
argument to ps5000aRunBlock. You must then poll the driver to see if it has finished

collecting the requested samples.

Applicability Block mode

Arguments handle, the handle of the required device

* ready: output: indicates the state of the collection. If zero, the

device is still collecting. If non-zero, the device has finished collecting
and ps5000aGetValues can be used to retrieve the data.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_CANCELLED
PICO_NOT_RESPONDING

API functions58

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.29 ps5000aIsTriggerOrPulseWidthQualifierEnabled
PICO_STATUS ps5000aIsTriggerOrPulseWidthQualifierEnabled
(

int16_t handle,
int16_t * triggerEnabled,
int16_t * pulseWidthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability Call after setting up the trigger, and just before calling either
ps5000aRunBlock or ps5000aRunStreaming.

Arguments handle, the handle of the required device

* triggerEnabled, on exit, indicates whether the trigger will

successfully be set when ps5000aRunBlock or

ps5000aRunStreaming is called. A non-zero value indicates that the

trigger is set, zero that the trigger is not set.

* pulseWidthQualifierEnabled, on exit, indicates whether the

pulse width qualifier will successfully be set when ps5000aRunBlock
or ps5000aRunStreaming is called. A non-zero value indicates that

the pulse width qualifier is set, zero that the pulse width qualifier is
not set.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 59

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.30 ps5000aMaximumValue
PICO_STATUS ps5000aMaximumValue
(

int16_t handle,
int16_t * value

)

This function returns a status code and outputs the maximum ADC count value to a
parameter. The output value depends on the currently selected resolution.

Applicability All modes

Arguments handle, the handle of the required device

* value, pointer to an int16_t (output), set to the maximum

ADC value.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY
PICO_DRIVER_FUNCTION

API functions60

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.31 ps5000aMemorySegments
PICO_STATUS ps5000aMemorySegments
(

int16_t handle,
uint32_t nSegments,
int32_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each
capture fills the scope's available memory. This function allows you to divide the
memory into a number of segments so that the scope can store several waveforms
sequentially.

Applicability All modes

Arguments handle, the handle of the required device

nSegments, the number of segments required, from:

1 to 65,535: PicoScope 5242A/B, 5243A/B, 5442A/B, 5443A/B
1 to 125,000: PicoScope 5244A, 5444A
1 to 250,000: PicoScope 5244B, 5444B

Note that, at 12-bit resolution or higher, the maximum number of
segments is 16,384 for the PicoScope 5242A and 5442A and 32,768
for the PicoScope 5242B and 5442B.

* nMaxSamples, on exit, the number of samples available in each

segment. This is the total number over all channels, so if more than
one channel is in use then the number of samples available to each
channel is nMaxSamples divided by the number of channels.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 61

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.32 ps5000aMinimumValue
PICO_STATUS ps5000aMinimumValue
(

int16_t handle,
int16_t * value

)

This function returns a status code and outputs the minimum ADC count value to a
parameter. The output value depends on the currently selected resolution.

Applicability All modes

Arguments handle, the handle of the required device

* value, pointer to an int16_t, (output) set to the minimum

ADC value.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY
PICO_DRIVER_FUNCTION

API functions62

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.33 ps5000aNoOfStreamingValues
PICO_STATUS ps5000aNoOfStreamingValues
(

int16_t handle,
uint32_t * noOfValues

)

This function returns the number of samples available after data collection in
streaming mode. Call it after calling ps5000aStop.

Applicability Streaming mode

Arguments handle, the handle of the required device

* noOfValues, on exit, the number of samples

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_NOT_USED
PICO_BUSY
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 63

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.34 ps5000aOpenUnit
PICO_STATUS ps5000aOpenUnit
(

int16_t * handle,
int8_t * serial
PS5000A_DEVICE_RESOLUTION resolution

)

This function opens a PicoScope 5000 Series scope attached to the computer. The
maximum number of units that can be opened depends on the operating system, the
kernel driver and the computer. If ps5000aOpenUnit is called without the power

supply connected, the driver returns PICO_POWER_SUPPLY_NOT_CONNECTED.

Applicability All modes

Arguments * handle, on exit, the result of the attempt to open a scope:

-1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope

If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

* serial, on entry, a null-terminated string containing the serial

number of the scope to be opened. If serial is NULL then the

function opens the first scope found; otherwise, it tries to open the
scope that matches the string.

resolution, determines the resolution of the device when opened,

the available values are one of the PS5000A_DEVICE_RESOLUTION.

If resolution is out of range the device will return
PICO_INVALID_DEVICE_RESOLUTION.

Returns PICO_OK
PICO_OS_NOT_SUPPORTED
PICO_INVALID_DEVICE_RESOLUTION.
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_EEPROM_CORRUPT
PICO_KERNEL_DRIVER_TOO_OLD
PICO_FPGA_FAIL
PICO_MEMORY_CLOCK_FREQUENCY
PICO_FW_FAIL
PICO_MAX_UNITS_OPENED
PICO_NOT_FOUND (if the specified unit was not found)
PICO_NOT_RESPONDING
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA
PICO_POWER_SUPPLY_NOT_CONNECTED

API functions64

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.35 ps5000aOpenUnitAsync
PICO_STATUS ps5000aOpenUnitAsync
(

int16_t * status,
int8_t * serial
PS5000A_DEVICE_RESOLUTION resolution

)

This function opens a scope without blocking the calling thread. You can find out when
it has finished by periodically calling ps5000aOpenUnitProgress until that function

returns a non-zero value.

Applicability All modes

Arguments * status, a status code:

0 if the open operation was disallowed because another open
operation is in progress
1 if the open operation was successfully started

* serial: see ps5000aOpenUnit

resolution, determines the resolution of the device when opened,

the available values are one of the PS5000A_DEVICE_RESOLUTION.

If resolution is out of range the device will return
PICO_INVALID_DEVICE_RESOLUTION.

Returns PICO_OK
PICO_INVALID_DEVICE_RESOLUTION
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_OPERATION_FAILED

PicoScope 5000 Series (A API) Programmer's Guide 65

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.36 ps5000aOpenUnitProgress
PICO_STATUS ps5000aOpenUnitProgress
(

int16_t * handle,
int16_t * progressPercent,
int16_t * complete

)

This function checks on the progress of a request made to ps5000aOpenUnitAsync
to open a scope.

Applicability Use after ps5000aOpenUnitAsync

Arguments * handle: see ps5000aOpenUnit. This handle is valid only if the

function returns PICO_OK.

* progressPercent, on exit, the percentage progress towards

opening the scope. 100% implies that the open operation is
complete.

* complete, set to 1 when the open operation has finished

Returns PICO_OK
PICO_NULL_PARAMETER
PICO_OPERATION_FAILED

API functions66

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.37 ps5000aPingUnit
PICO_STATUS ps5000aPingUnit
(

int16_t handle
)

This function can be used to check that the already opened device is still connected to
the USB port and communication is successful.

Applicability All modes

Arguments handle, the handle of the required device

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_BUSY
PICO_NOT_RESPONDING

PicoScope 5000 Series (A API) Programmer's Guide 67

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.38 ps5000aRunBlock
PICO_STATUS ps5000aRunBlock
(

int16_t handle,
int32_t noOfPreTriggerSamples,
int32_t noOfPostTriggerSamples,
uint32_t timebase,
int32_t * timeIndisposedMs,
uint32_t segmentIndex,
ps5000aBlockReady lpReady,
void * pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this
process, see Using block mode.

The number of samples is determined by noOfPreTriggerSamples and

noOfPostTriggerSamples (see below for details). The total number of samples

must not be more than the size of the segment referred to by segmentIndex.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device.

noOfPreTriggerSamples, the number of samples to return before

the trigger event. If no trigger has been set, then this argument is
added to noOfPostTriggerSamples to give the maximum number

of data points (samples) to collect.

noOfPostTriggerSamples, the number of samples to return after

the trigger event. If no trigger event has been set, then this
argument is added to noOfPreTriggerSamples to give the

maximum number of data points to collect. If a trigger condition has
been set, this specifies the number of data points to collect after a
trigger has fired, and the number of samples to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number in the range 0 to 232–1. See the guide to

calculating timebase values.

* timeIndisposedMs, on exit, the time, in milliseconds, that the

scope will spend collecting samples. This does not include any auto
trigger timeout. If this pointer is null, nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to

use.

lpReady, a pointer to the ps5000aBlockReady callback function

that the driver will call when the data has been collected. To use the
ps5000aIsReady polling method instead of a callback function, set

this pointer to NULL.

* pParameter, a void pointer that is passed to the

ps5000aBlockReady callback function. The callback can use this

pointer to return arbitrary data to the application.

API functions68

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

Returns PICO_OK
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_BUFFERS_NOT_SET (in Overlapped mode)
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_CHANNEL
PICO_INVALID_TRIGGER_CHANNEL
PICO_INVALID_CONDITION_CHANNEL
PICO_TOO_MANY_SAMPLES
PICO_INVALID_TIMEBASE
PICO_NOT_RESPONDING
PICO_CONFIG_FAIL
PICO_INVALID_PARAMETER
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_DRIVER_FUNCTION
PICO_FW_FAIL
PICO_NOT_ENOUGH_SEGMENTS (in Bulk mode)
PICO_PULSE_WIDTH_QUALIFIER
PICO_SEGMENT_OUT_OF_RANGE (in Overlapped mode)

PICO_STARTINDEX_INVALID (in Overlapped mode)

PICO_INVALID_SAMPLERATIO (in Overlapped mode)
PICO_CONFIG_FAIL

PicoScope 5000 Series (A API) Programmer's Guide 69

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.39 ps5000aRunStreaming
PICO_STATUS ps5000aRunStreaming
(

int16_t handle,
uint32_t * sampleInterval,
PS5000A_TIME_UNITS sampleIntervalTimeUnits,
uint32_t maxPreTriggerSamples,
uint32_t maxPostTriggerSamples,
int16_t autoStop,
uint32_t downSampleRatio,
PS5000A_RATIO_MODE downSampleRatioMode,
uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is downsampled if necessary and then
delivered to the application. Call ps5000aGetStreamingLatestValues to retrieve

the data. See Using streaming mode for a step-by-step guide to this process.

When a trigger is set, the total number of samples stored in the driver is the sum of
maxPreTriggerSamples and maxPostTriggerSamples. If autoStop is false then

this will become the maximum number of samples without downsampling.

Applicability Streaming mode

Arguments handle, the handle of the required device.

* sampleInterval, on entry, the requested time interval between

samples; on exit, the actual time interval used.

sampleIntervalTimeUnits, the unit of time used for

sampleInterval. Use one of these values:

PS5000A_FS PS5000A_PS
PS5000A_NS PS5000A_US
PS5000A_MS PS5000A_S

maxPreTriggerSamples, the maximum number of raw samples

before a trigger event for each enabled channel. If no trigger
condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples

after a trigger event for each enabled channel. If no trigger condition
is set, this argument states the maximum number of samples to be
stored.

autoStop, a flag that specifies if the streaming should stop when

all of maxSamples have been captured.

downSampleRatio,
downSampleRatioMode: see ps5000aGetValues

overviewBufferSize, the size of the overview buffers. These are

temporary buffers used for storing the data before returning it to the
application. The size is the same as the bufferLth value passed to

ps5000aSetDataBuffer.

Returns PICO_OK
PICO_INVALID_HANDLE

API functions70

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

PICO_ETS_MODE_SET
PICO_USER_CALLBACK
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_STREAMING_FAILED
PICO_NOT_RESPONDING
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_TRIGGER_ERROR
PICO_INVALID_SAMPLE_INTERVAL
PICO_INVALID_BUFFER
PICO_DRIVER_FUNCTION
PICO_FW_FAIL
PICO_MEMORY

PicoScope 5000 Series (A API) Programmer's Guide 71

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.40 ps5000aSetBandwidthFilter
PICO_STATUS ps5000aSetBandwidthFilter
(

int16_t handle,
PS5000A_CHANNEL channel,
PS5000A_BANDWIDTH_LIMITER bandwidth

)

This function controls the hardware bandwidth limiter.

Applicability All modes. All models.

Arguments handle, the handle of the required device

channel, the channel to be configured. The values are:

PS5000A_CHANNEL_A: Channel A input

PS5000A_CHANNEL_B: Channel B input

PS5000A_CHANNEL_C: Channel C input

PS5000A_CHANNEL_D: Channel D input

bandwidth, the bandwidth is either PS5000A_BW_FULL or
PS5000A_BW_20MHZ

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_BANDWIDTH

API functions72

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.41 ps5000aSetChannel
PICO_STATUS ps5000aSetChannel
(

int16_t handle,
PS5000A_CHANNEL channel,
int16_t enabled,
PS5000A_COUPLING type,
PS5000A_RANGE range,
float analogueOffset

)

This function specifies whether an input channel is to be enabled, its input coupling
type, voltage range, analog offset and bandwidth limit.

Applicability All modes

Arguments handle, the handle of the required device

channel, the channel to be configured. The values are:

PS5000A_CHANNEL_A: Channel A input

PS5000A_CHANNEL_B: Channel B input

PS5000A_CHANNEL_C: Channel C input

PS5000A_CHANNEL_D: Channel D input

enabled, whether or not to enable the channel. The values are:

TRUE: enable

FALSE: do not enable

type, the impedance and coupling type. The values are:

PS5000A_AC: 1 megohm impedance, AC coupling. The channel

accepts input frequencies from about 1 hertz up to its maximum -
3 dB analog bandwidth.
PS5000A_DC: 1 megohm impedance, DC coupling. The scope

accepts all input frequencies from zero (DC) up to its maximum
-3 dB analog bandwidth.

range, the input voltage range:

PS5000A_10MV: ±10 mV

PS5000A_20MV: ±20 mV

PS5000A_50MV: ±50 mV

PS5000A_100MV: ±100 mV

PS5000A_200MV: ±200 mV

PS5000A_500MV: ±500 mV

PS5000A_1V: ±1 V

PS5000A_2V: ±2 V

PS5000A_5V: ±5 V

PS5000A_10V: ±10 V

PS5000A_20V: ±20 V

analogueOffset, a voltage to add to the input channel before

digitization. The allowable range of offsets depends on the input
range selected for the channel, as obtained from
ps5000aGetAnalogueOffset.

PicoScope 5000 Series (A API) Programmer's Guide 73

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_VOLTAGE_RANGE
PICO_INVALID_COUPLING
PICO_INVALID_ANALOGUE_OFFSET
PICO_DRIVER_FUNCTION

API functions74

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.42 ps5000aSetDataBuffer
PICO_STATUS ps5000aSetDataBuffer
(

int16_t handle,
PS5000A_CHANNEL channel,
int16_t * buffer,
int32_t bufferLth,
uint32_t segmentIndex,
PS5000A_RATIO_MODE mode

)

This function tells the driver where to store the data, either unprocessed or
downsampled, that will be returned after the next call to one of the GetValues
functions. The function allows you to specify only a single buffer, so for aggregation
mode, which requires two buffers, you need to call ps5000aSetDataBuffers
instead.

You must allocate memory for the buffer before calling this function.

Applicability Block, rapid block and streaming modes. All downsampling modes
except aggregation.

Arguments handle, the handle of the required device

channel, the channel you want to use with the buffer. Use one of

these values:
PS5000A_CHANNEL_A
PS5000A_CHANNEL_B
PS5000A_CHANNEL_C
PS5000A_CHANNEL_D

* buffer, the location of the buffer

bufferLth, the size of the buffer array

segmentIndex, the number of the memory segment to be used

mode, the downsampling mode. See ps5000aGetValues for the

available modes, but note that a single call to
ps5000aSetDataBuffer can only associate one buffer with one

downsampling mode. If you intend to call ps5000aGetValues with

more than one downsampling mode activated, then you must call
ps5000aSetDataBuffer several times to associate a separate

buffer with each downsampling mode.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_SEGMENT_OUT_OF_RANGE
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

PicoScope 5000 Series (A API) Programmer's Guide 75

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.43 ps5000aSetDataBuffers
PICO_STATUS ps5000aSetDataBuffers
(

int16_t handle,
PS5000A_CHANNEL channel,
int16_t * bufferMax,
int16_t * bufferMin,
int32_t bufferLth,
uint32_t segmentIndex,
PS5000A_RATIO_MODE mode

)

This function tells the driver the location of one or two buffers for receiving data. You
need to allocate memory for the buffers before calling this function. If you do not need
two buffers, because you are not using aggregate mode, then you can optionally use
ps5000aSetDataBuffer instead.

Applicability Block and streaming modes with aggregation.

Arguments handle, the handle of the required device.

channel, the channel for which you want to set the buffers. Use

one of these constants:
PS5000A_CHANNEL_A
PS5000A_CHANNEL_B
PS5000A_CHANNEL_C
PS5000A_CHANNEL_D

* bufferMax, a buffer to receive the maximum data values in

aggregation mode, or the non-aggregated values otherwise.

* bufferMin, a buffer to receive the minimum aggregated data

values. Not used in other downsampling modes.

bufferLth, the size of the bufferMax and bufferMin arrays.

segmentIndex, the number of the memory segment to be used

mode: see ps5000aGetValues

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_SEGMENT_OUT_OF_RANGE
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

API functions76

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.44 ps5000aSetDeviceResolution
PICO_STATUS ps5000aSetDeviceResolution
(

int16_t handle,
PS5000A_DEVICE_RESOLUTION resolution

)

This function sets the new resolution. When using 12 bits or more the memory is
halved. When using 15-bit resolution only 2 channels can be enabled to capture data,
and when using 16-bit resolution only one channel is available. If resolution is
changed, any data captured that has not been saved will be lost. If
ps5000aSetChannel is not called, ps5000aRunBlock and ps5000aRunStreaming
may fail.

Applicability All modes

Arguments * handle, on exit, the result of the attempt to open a scope:

-1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope

If a valid handle is returned, it must be used in all subsequent calls
to API functions to identify this scope.

resolution, determines the resolution of the device when opened,

the available values are one of the PS5000A_DEVICE_RESOLUTION.

If resolution is out of range the device will return
PICO_INVALID_DEVICE_RESOLUTION.

Returns PICO_OK
PICO_INVALID_DEVICE_RESOLUTION
PICO_OS_NOT_SUPPORTED
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_EEPROM_CORRUPT
PICO_KERNEL_DRIVER_TOO_OLD
PICO_FPGA_FAIL
PICO_MEMORY_CLOCK_FREQUENCY
PICO_FW_FAIL
PICO_MAX_UNITS_OPENED
PICO_NOT_FOUND (if the specified unit was not found)
PICO_NOT_RESPONDING
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA
PICO_POWER_SUPPLY_NOT_CONNECTED

PicoScope 5000 Series (A API) Programmer's Guide 77

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.45 ps5000aSetEts
PICO_STATUS ps5000aSetEts
(

int16_t handle,
PS5000A_ETS_MODE mode,
int16_t etsCycles,
int16_t etsInterleave,
int32_t * sampleTimePicoseconds

)

This function is used to enable or disable ETS (equivalent-time sampling) and to set
the ETS parameters. See ETS overview for an explanation of ETS mode.

Applicability Block mode

Arguments handle, the handle of the required device

mode, the ETS mode. Use one of these values:

PS5000A_ETS_OFF: disables ETS

PS5000A_ETS_FAST: enables ETS and provides etsCycles of

data, which may contain data from
previously returned cycles

PS5000A_ETS_SLOW: enables ETS and provides fresh data

every etsCycles. This mode takes

longer to provide each data set, but the
data sets are more stable and are
guaranteed to contain only new data.

etsCycles, the number of cycles to store: the computer can then

select etsInterleave cycles to give the most uniform spread of

samples.
Range: between two and five times the value of etsInterleave,

and not more than either:
PS5242A_MAX_ETS_CYCLES
PS5243A_MAX_ETS_CYCLES
PS5244A_MAX_ETS_CYCLES

etsInterleave, the number of waveforms to combine into a single

ETS capture.
Maximum value is either:
PS5242A_MAX_INTERLEAVE
PS5243A_MAX_INTERLEAVE
PS5244A_MAX_INTERLEAVE

* sampleTimePicoseconds, on exit, the effective sampling

interval of the ETS data. For example, if the captured sample time is
4 ns and etsInterleave is 10, then the effective sample time in

ETS mode is 400 ps.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

API functions78

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.46 ps5000aSetEtsTimeBuffer
PICO_STATUS ps5000aSetEtsTimeBuffer
(

int16_t handle,
int64_t * buffer,
int32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the 64-bit timing information for each ETS sample after you run a
block-mode ETS capture.

Applicability ETS mode only.

If your programming language does not support 64-bit data, use the
32-bit version ps5000aSetEtsTimeBuffers instead.

Arguments handle, the handle of the required device

* buffer, an array of 64-bit words, each representing the time in

femtoseconds (10-15 s) at which the sample was captured

bufferLth, the size of the buffer array

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 79

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.47 ps5000aSetEtsTimeBuffers
PICO_STATUS ps5000aSetEtsTimeBuffers
(

int16_t handle,
uint32_t * timeUpper,
uint32_t * timeLower,
int32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These
buffers contain the timing information for each ETS sample after you run a block-mode
ETS capture. There are two buffers containing the upper and lower 32-bit parts of the
timing information, to allow programming languages that do not support 64-bit data to
retrieve the timings.

Applicability ETS mode only.

If your programming language supports 64-bit data then you can use
ps5000aSetEtsTimeBuffer instead.

Arguments handle, the handle of the required device

* timeUpper, an array of 32-bit words, each representing the

upper 32 bits of the time in femtoseconds (10-15 s) at which the
sample was captured

* timeLower, an array of 32-bit words, each representing the

lower 32 bits of the time in femtoseconds at which the sample was
captured

bufferLth, the size of the timeUpper and timeLower arrays

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DRIVER_FUNCTION

API functions80

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.48 ps5000aSetNoOfCaptures
PICO_STATUS ps5000aSetNoOfCaptures
(

int16_t handle,
uint32_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture only one
waveform. Once a value has been set, the value remains constant unless changed.

Applicability Rapid block mode

Arguments handle, the handle of the device

nCaptures, the number of waveforms to capture in one run

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 81

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.49 ps5000aSetPulseWidthQualifier
PICO_STATUS ps5000aSetPulseWidthQualifier
(

int16_t handle,
PS5000A_PWQ_CONDITIONS * conditions,
int16_t nConditions,
PS5000A_THRESHOLD_DIRECTION direction,
uint32_t lower,
uint32_t upper,
PS5000A_PULSE_WIDTH_TYPE type

)

This function sets up pulse-width qualification, which can be used on its own for pulse-
width triggering or combined with threshold triggering, level triggering or window
triggering to produce more complex triggers. The pulse-width qualifier is set by
defining one or more structures that are then ORed together. Each structure is itself
the AND of the states of one or more of the inputs. This AND-OR logic allows you to
create any possible Boolean function of the scope's inputs.

Applicability All modes

Arguments handle, the handle of the required device

* conditions, an array of PS5000A_PWQ_CONDITIONS structures

specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
are several elements, the overall trigger condition is the logical OR of
all the elements. If conditions is NULL then the pulse-width

qualifier is not used.

nConditions, the number of elements in the conditions array.

If nConditions is zero then the pulse-width qualifier is not used.

Range: 0 to PS5000A_MAX_PULSE_WIDTH_QUALIFIER_COUNT.

direction, the direction of the signal required for the pulse width

trigger to fire. See PS5000A_THRESHOLD_DIRECTION constants for

the list of possible values. Each channel of the oscilloscope (except
the EXT input) has two thresholds for each direction—for example,
PS5000A_RISING and PS5000A_RISING_LOWER—so that one can be

used for the pulse-width qualifier and the other for the level trigger.
The driver will not let you use the same threshold for both triggers;
so, for example, you cannot use PS5000A_RISING as the

direction argument for both ps5000aSetTriggerConditions
and ps5000aSetPulseWidthQualifier at the same time. There is

no such restriction when using window triggers.

lower, the lower limit of the pulse-width counter, in samples.

upper, the upper limit of the pulse-width counter, in samples. This

parameter is used only when the type is set to
PS5000A_PW_TYPE_IN_RANGE or

PS5000A_PW_TYPE_OUT_OF_RANGE.

API functions82

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

type, the pulse-width type, one of these constants:

PS5000A_PW_TYPE_NONE: do not use the pulse width qualifier

PS5000A_PW_TYPE_LESS_THAN: pulse width less than lower
PS5000A_PW_TYPE_GREATER_THAN: pulse width greater than
lower
PS5000A_PW_TYPE_IN_RANGE: pulse width between lower and
upper
PS5000A_PW_TYPE_OUT_OF_RANGE: pulse width not between

lower and upper

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_PULSE_WIDTH_QUALIFIER
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 83

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.49.1 ps5000a_PWQ_CONDITIONS structure

A structure of this type is passed to ps5000aSetPulseWidthQualifier in the

conditions argument to specify the trigger conditions. It is defined as follows:

typedef struct tPS5000APwqConditions
{

PS5000A_TRIGGER_STATE channelA;
PS5000A_TRIGGER_STATE channelB;
PS5000A_TRIGGER_STATE channelC;
PS5000A_TRIGGER_STATE channelD;
PS5000A_TRIGGER_STATE external;
PS5000A_TRIGGER_STATE aux;

} PS5000A_PWQ_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The
ps5000aSetPulseWidthQualifier function can OR together a number of these

structures to produce the final pulse width qualifier, which can therefore be any
possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Applicability All models

Elements channelA, channelB, channelC*, channelD*, external:
the type of condition that should be applied to each channel. Use
these constants: -

PS5000A_CONDITION_DONT_CARE
PS5000A_CONDITION_TRUE
PS5000A_CONDITION_FALSE

The channels that are set to PS5000A_CONDITION_TRUE or

PS5000A_CONDITION_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS5000A_CONDITION_DONT_CARE are ignored.

aux: not used

*Note: applicable to 4-channel analog devices only.

API functions84

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.50 ps5000aSetSigGenArbitrary
PICO_STATUS ps5000aSetSigGenArbitrary
(

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk,
uint32_t startDeltaPhase,
uint32_t stopDeltaPhase,
uint32_t deltaPhaseIncrement,
uint32_t dwellCount,
int16_t * arbitraryWaveform,
int32_t arbitraryWaveformSize,
PS5000A_SWEEP_TYPE sweepType,
PS5000A_EXTRA_OPERATIONS operation,
PS5000A_INDEX_MODE indexMode,
uint32_t shots,
uint32_t sweeps,
PS5000A_SIGGEN_TRIG_TYPE triggerType,
PS5000A_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator (AWG) uses direct digital synthesis (DDS). It
maintains a 32-bit phase accumulator that indicates the present location in the
waveform. The top bits of the phase accumulator are used as an index into a buffer
containing the arbitrary waveform. The remaining bits act as the fractional part of the
index, enabling high-resolution control of output frequency and allowing the
generation of lower frequencies.

The phase accumulator initially increments by startDeltaPhase. If the AWG is set to

sweep mode, the phase increment is increased or decreased at specified intervals until
it reaches stopDeltaPhase. The easiest way to obtain the values of

startDeltaPhase and stopDeltaPhase necessary to generate the desired

frequency is to call ps5000aSigGenFrequencyToPhase. Alternatively, see

Calculating deltaPhase below for more information on how to calculate these values.

Applicability All modes. B models only.

Arguments handle, the handle of the required device

offsetVoltage, the voltage offset, in microvolts, to be applied to

the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform

signal.
Note that if the signal voltages defined by the combination of
offsetVoltage and pkToPk extend outside the voltage range of

the signal generator, the output waveform will be clipped.

startDeltaPhase, the initial value added to the phase

accumulator as the generator begins to step through the waveform
buffer.

PicoScope 5000 Series (A API) Programmer's Guide 85

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

stopDeltaPhase, the final value added to the phase accumulator

before the generator restarts or reverses the sweep.

deltaPhaseIncrement, the amount added to the delta phase

value every time the dwellCount period expires. This determines

the amount by which the generator sweeps the output frequency in
each dwell period.

dwellCount, the time, in 50 ns steps, between successive

additions of deltaPhaseIncrement to the delta phase

accumulator. This determines the rate at which the generator sweeps
the output frequency.
Minimum value: PS5000A_MIN_DWELL_COUNT

* arbitraryWaveform, a buffer that holds the waveform pattern

as a set of samples equally spaced in time. If pkToPk is set to its

maximum (4 V) and offsetVoltage is set to 0, then a sample of

–32768 corresponds to –2 V, and +32767 to +2 V.

arbitraryWaveformSize, the size of the arbitrary waveform

buffer, in samples, from MIN_SIG_GEN_BUFFER_SIZE to

PS5X42A_MAX_SIG_GEN_BUFFER_SIZE,

PS5X43A_MAX_SIG_GEN_BUFFER_SIZE or

PS5X44A_MAX_SIG_GEN_BUFFER_SIZE, depending on the

oscilloscope model.

sweepType, determines whether the startDeltaPhase is swept

up to the stopDeltaPhase, down to it, or repeatedly up and down.

Use one of these values:
PS5000A_UP
PS5000A_DOWN
PS5000A_UPDOWN
PS5000A_DOWNUP

operation, the type of waveform to be produced, specified by one

of the following enumerated types:
PS5000A_ES_OFF, normal signal generator operation specified

by wavetype.
PS5000A_WHITENOISE, the signal generator produces white

noise and ignores all settings except pkToPk and
offsetVoltage.
PS5000A_PRBS, produces a random bitstream with a bit rate

specified by the start and stop frequency.

indexMode, specifies how the signal will be formed from the

arbitrary waveform data. Single and dual index modes are possible.
Use one of these constants:

PS5000A_SINGLE
PS5000A_DUAL

shots,
sweeps,
triggerType,
triggerSource,
extInThreshold: see ps5000aSigGenBuiltIn

API functions86

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

Returns PICO_OK
PICO_AWG_NOT_SUPPORTED
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_BUSY
PICO_INVALID_HANDLE
PICO_SIG_GEN_PARAM
PICO_SHOTS_SWEEPS_WARNING
PICO_NOT_RESPONDING
PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIGGEN_PK_TO_PK
PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
PICO_DRIVER_FUNCTION
PICO_SIGGEN_WAVEFORM_SETUP_FAILED

4.50.1 AWG index modes

The arbitrary waveform generator supports single and dual index modes to help you
make the best use of the waveform buffer.

Single mode. The generator outputs the raw
contents of the buffer repeatedly. This mode is
the only one that can generate asymmetrical
waveforms. You can also use this mode for
symmetrical waveforms, but the dual mode
makes more efficient use of the buffer
memory.

Dual mode. The generator outputs the
contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

4.50.2 Calculating deltaPhase

The arbitrary waveform generator steps through the waveform by adding a deltaPhase
value between 1 and phaseAccumulatorSize-1 to the phase accumulator every
dacPeriod (1/dacFrequency). If the deltaPhase is constant, the generator produces a
waveform at a constant frequency that can be calculated as follows:

where:

outputFrequency = repetition rate of the complete arbitrary waveform
dacFrequency = update rate of AWG DAC (see table below)
deltaPhase = calculated from startDeltaPhase and deltaPhaseIncrement

PicoScope 5000 Series (A API) Programmer's Guide 87

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

phaseAccumulatorSize = maximum count of phase accumulator (see table below)
awgBufferSize = maximum AWG buffer size (see table below)
arbitraryWaveformSize = length in samples of the user-defined waveform

You can call ps5000aSigGenFrequencyToPhase to calculate the value for

deltaPhase for the desired frequency.

It is also possible to sweep the frequency by continually modifying the deltaPhase.
This is done by setting up a deltaPhaseIncrement that the oscilloscope adds to the
deltaPhase at specified intervals.

Parameter PicoScope 5242B
PicoScope 5442B

PicoScope 5243B
PicoScope 5443B

PicoScope 5244B
PicoScope 5444B

dacFrequency 200 MHz

dacPeriod (= 1/dacFrequency) 5 ns

phaseAccumulatorSize 4 294 967 296 (232)

awgBufferSize 16 384 (214) 32 768 (215) 49 152 (3 × 214)

API functions88

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.51 ps5000aSetSigGenBuiltIn
PICO_STATUS ps5000aSetSigGenBuiltIn
(

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk,
PS5000A_WAVE_TYPE waveType,
float startFrequency,
float stopFrequency,
float increment,
float dwellTime,
PS5000A_SWEEP_TYPE sweepType,
PS5000A_EXTRA_OPERATIONS operation,
uint32_t shots,
uint32_t sweeps,
PS5000A_SIGGEN_TRIG_TYPE triggerType,
PS5000A_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the device will sweep
either up, down or up and down.

Applicability All models

Arguments handle, the handle of the required device

offsetVoltage, the voltage offset, in microvolts, to be applied to

the waveform

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform

signal.
Note that if the signal voltages described by the combination of
offsetVoltage and pkToPk extend outside the voltage range of

the signal generator, the output waveform will be clipped.

waveType, the type of waveform to be generated.

PS5000A_SINE sine wave
PS5000A_SQUARE square wave
PS5000A_TRIANGLE triangle wave
PS5000A_DC_VOLTAGE DC voltage

The following waveTypes apply to B models only:
PS5000A_RAMP_UP rising sawtooth
PS5000A_RAMP_DOWN falling sawtooth
PS5000A_SINC sin (x)/x
PS5000A_GAUSSIAN Gaussian
PS5000A_HALF_SINE half (full-wave rectified) sine

startFrequency, the frequency that the signal generator will

initially produce. For allowable values see
PS5000A_SINE_MAX_FREQUENCY and related values.

PicoScope 5000 Series (A API) Programmer's Guide 89

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

stopFrequency, the frequency at which the sweep reverses direction

or returns to the initial frequency

increment, the amount of frequency increase or decrease in sweep

mode

dwellTime, the time for which the sweep stays at each frequency, in

seconds

sweepType, whether the frequency will sweep from

startFrequency to stopFrequency, in the opposite direction, or

repeatedly reverse direction. Use one of these constants:
PS5000A_UP
PS5000A_DOWN
PS5000A_UPDOWN
PS5000A_DOWNUP

operation, the type of waveform to be produced, specified by one of

the following enumerated types (B models only):
PS5000A_ES_OFF, normal signal generator operation specified by

wavetype.
PS5000A_WHITENOISE, the signal generator produces white noise

and ignores all settings except pkToPk and offsetVoltage.
PS5000A_PRBS, produces a random bitstream with a bit rate

specified by the start and stop frequency.

shots,
0: sweep the frequency as specified by sweeps
1...PS5000A_MAX_SWEEPS_SHOTS: the number of cycles of the

waveform to be produced after a trigger event. sweeps must be

zero.
PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start and run

continuously after trigger occurs

sweeps,
0: produce number of cycles specified by shots
1..PS5000A_MAX_SWEEPS_SHOTS: the number of times to sweep

the frequency after a trigger event, according to sweepType.
shots must be zero.

PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start a sweep

and continue after trigger occurs

triggerType, the type of trigger that will be applied to the signal

generator:

PS5000A_SIGGEN_RISING trigger on rising edge
PS5000A_SIGGEN_FALLING trigger on falling edge
PS5000A_SIGGEN_GATE_HIGH run while trigger is high
PS5000A_SIGGEN_GATE_LOW run while trigger is low

API functions90

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

triggerSource, the source that will trigger the signal generator.

PS5000A_SIGGEN_NONE run without waiting for trigger
PS5000A_SIGGEN_SCOPE_TRIG use scope trigger
PS5000A_SIGGEN_EXT_IN use EXT input
PS5000A_SIGGEN_SOFT_TRIG wait for software trigger

provided by
ps5000aSigGenSoftwareCo
ntrol

PS5000A_SIGGEN_TRIGGER_RAW reserved

If a trigger source other than P5000A_SIGGEN_NONE is specified, then

either shots or sweeps, but not both, must be non-zero.

extInThreshold, used to set trigger level for external trigger.

Returns PICO_OK
PICO_BUSY
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_SIG_GEN_PARAM
PICO_SHOTS_SWEEPS_WARNING
PICO_NOT_RESPONDING
PICO_WARNING_AUX_OUTPUT_CONFLICT
PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIGGEN_PK_TO_PK
PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
PICO_DRIVER_FUNCTION
PICO_SIGGEN_WAVEFORM_SETUP_FAILED
PICO_NOT_RESPONDING

4.52 ps5000aSetSigGenBuiltInV2
PICO_STATUS ps5000aSetSigGenBuiltIn
(

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk,
PS5000A_WAVE_TYPE waveType,
float startFrequency,
float stopFrequency,
float increment,
float dwellTime,
PS5000A_SWEEP_TYPE sweepType,
PS5000A_EXTRA_OPERATIONS operation,
uint32_t shots,
uint32_t sweeps,
PS5000A_SIGGEN_TRIG_TYPE triggerType,
PS5000A_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function is the same as ps5000aSetSigGenBuiltIn, except that it allows you

to set the frequency arguments with greater precision. It sets up the signal generator
to produce a signal from a list of built-in waveforms. If different start and stop
frequencies are specified, the device will sweep either up, down or up and down.

PicoScope 5000 Series (A API) Programmer's Guide 91

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Applicability All models

Arguments handle, the handle of the required device

offsetVoltage,
pkToPk,
waveType,
startFrequency,
stopFrequency,
increment,
dwellTime,
sweepType,
operation,
shots,
sweeps,
triggerType,
triggerSource,
extInThreshold: see ps5000aSetSigGenBuiltIn

Returns PICO_OK
PICO_BUSY
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_INVALID_HANDLE
PICO_SIG_GEN_PARAM
PICO_SHOTS_SWEEPS_WARNING
PICO_NOT_RESPONDING
PICO_WARNING_AUX_OUTPUT_CONFLICT
PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIGGEN_PK_TO_PK
PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
PICO_DRIVER_FUNCTION
PICO_SIGGEN_WAVEFORM_SETUP_FAILED
PICO_NOT_RESPONDING

API functions92

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.53 ps5000aSetSigGenPropertiesArbitrary
PICO_STATUS ps5000aSetSigGenPropertiesArbitrary
(

int16_t handle,
uint32_t startDeltaPhase,
uint32_t stopDeltaPhase,
uint32_t deltaPhaseIncrement,
uint32_t dwellCount,
PS5000A_SWEEP_TYPE sweepType,
uint32_t shots,
uint32_t sweeps,
PS5000A_SIGGEN_TRIG_TYPE triggerType,
PS5000A_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function reprograms the arbitrary waveform generator. All values can be
reprogrammed while the oscilloscope is waiting for a trigger.

Applicability All modes

Arguments See ps5000aSetSigGenArbitrary

Returns PICO_OK if successful.
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NO_SIGNAL_GENERATOR
PICO_WARNING_AUX_OUTPUT_CONFLICT
PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
PICO_SIGGEN_PK_TO_PK
PICO_SIGGEN_OFFSET_VOLTAGE
PICO_SIG_GEN_PARAM
PICO_SHOTS_SWEEPS_WARNING
PICO_AWG_NOT_SUPPORTED
PICO_BUSY
PICO_SIGGEN_WAVEFORM_SETUP_FAILED
PICO_NOT_RESPONDING
PICO_POWER_SUPPLY_UNDERVOLTAGE

PICO_POWER_SUPPLY_NOT_CONNECTED

PICO_POWER_SUPPLY_CONNECTED

PicoScope 5000 Series (A API) Programmer's Guide 93

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.54 ps5000aSetSigGenPropertiesBuiltIn
PICO_STATUS ps5000aSetSigGenPropertiesBuiltIn
(

int16_t handle,
double startFrequency,
double stopFrequency,
double increment,
double dwellTime,
PS5000A_SWEEP_TYPE sweepType,
uint32_t shots,
uint32_t sweeps,
PS5000A_SIGGEN_TRIG_TYPE triggerType,
PS5000A_SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function reprograms the signal generator. Values can be changed while the
oscilloscope is waiting for a trigger.

Applicability All modes

Arguments See ps5000aSetSigGenBuiltIn

Returns PICO_OK if successful.
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NO_SIGNAL_GENERATOR
PICO_SIG_GEN_PARAM
PICO_WARNING_AUX_OUTPUT_CONFLICT
PICO_WARNING_EXT_THRESHOLD_CONFLICT
PICO_SIGGEN_DC_VOLTAGE_NOT_CONFIGURABLE
PICO_BUSY
PICO_SIGGEN_WAVEFORM_SETUP_FAILED
PICO_NOT_RESPONDING
PICO_POWER_SUPPLY_UNDERVOLTAGE
PICO_USB3_0_DEVICE_NON_USB3_0_PORT
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_POWER_SUPPLY_CONNECTED

API functions94

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.55 ps5000aSetSimpleTrigger
PICO_STATUS ps5000aSetSimpleTrigger
(

int16_t handle,
int16_t enable,
PS5000A_CHANNEL source,
int16_t threshold,
PS5000A_THRESHOLD_DIRECTION direction,
uint32_t delay,
int16_t autoTrigger_ms

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any previous
pulse width qualifier is cancelled.

Applicability All modes

Arguments handle, the handle of the required device.

enable, zero to disable the trigger, any non-zero value to set the

trigger.

source, the channel on which to trigger.

threshold, the ADC count at which the trigger will fire.

direction, the direction in which the signal must move to cause a

trigger. The following directions are supported: ABOVE, BELOW,

RISING, FALLING and RISING_OR_FALLING.

delay, the time between the trigger occurring and the first sample.

For example, if delay=100 then the scope would wait 100 sample
periods before sampling. At a timebase of 500 MS/s, or 2 ns per
sample, the total delay would then be 100 x 2 ns = 200 ns. Range: 0
to MAX_DELAY_COUNT.

autoTrigger_ms, the number of milliseconds the device will wait if

no trigger occurs. If this is set to zero, the scope device will wait
indefinitely for a trigger.

Returns PICO_OK
PICO_INVALID_CHANNEL
PICO_INVALID_PARAMETER
PICO_MEMORY
PICO_CONDITIONS
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 95

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.56 ps5000aSetTriggerChannelConditions
PICO_STATUS ps5000aSetTriggerChannelConditions
(

int16_t handle,
PS5000A_TRIGGER_CONDITIONS * conditions,
int16_t nConditions

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by
one or more PS5000A_TRIGGER_CONDITIONS structures that are then ORed together.

Each structure is itself the AND of the states of one or more of the inputs. This AND-
OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps5000aSetSimpleTrigger.

Applicability All modes

Arguments handle, the handle of the required device.

* conditions, an array of PS5000A_TRIGGER_CONDITIONS
structures specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there is more than one element, the overall trigger condition is
the logical OR of all the elements.

nConditions, the number of elements in the conditions array.

If nConditions is zero then triggering is switched off.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_MEMORY
PICO_DRIVER_FUNCTION

API functions96

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.56.1 PS5000A_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps5000aSetTriggerChannelConditions in

the conditions argument to specify the trigger conditions, and is defined as follows:

-

typedef struct tPS5000ATriggerConditions
{

PS5000A_TRIGGER_STATE channelA;
PS5000A_TRIGGER_STATE channelB;
PS5000A_TRIGGER_STATE channelC;
PS5000A_TRIGGER_STATE channelD;
PS5000A_TRIGGER_STATE external;
PS5000A_TRIGGER_STATE aux;
PS5000A_TRIGGER_STATE pulseWidthQualifier;

} PS5000A_TRIGGER_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The
ps5000aSetTriggerChannelConditions function can OR together a number of

these structures to produce the final trigger condition, which can be any possible
Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements channelA, channelB, channelC, channelD, external,
pulseWidthQualifier: the type of condition that should be

applied to each channel. Use these constants:
PS5000A_CONDITION_DONT_CARE
PS5000A_CONDITION_TRUE
PS5000A_CONDITION_FALSE

The channels that are set to PS5000A_CONDITION_TRUE or

PS5000A_CONDITION_FALSE must all meet their conditions

simultaneously to produce a trigger. Channels set to
PS5000A_CONDITION_DONT_CARE are ignored.

aux: not used

PicoScope 5000 Series (A API) Programmer's Guide 97

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.57 ps5000aSetTriggerChannelDirections
PICO_STATUS ps5000aSetTriggerChannelDirections
(

int16_t handle,
PS5000A_THRESHOLD_DIRECTION channelA,
PS5000A_THRESHOLD_DIRECTION channelB,
PS5000A_THRESHOLD_DIRECTION channelC;
PS5000A_THRESHOLD_DIRECTION channelD;
PS5000A_THRESHOLD_DIRECTION ext,
PS5000A_THRESHOLD_DIRECTION aux

)

This function sets the direction of the trigger for each channel.

Applicability All modes

Arguments handle, the handle of the required device

channelA, channelB, channelC, channelD, ext, the

direction in which the signal must pass through the threshold to
activate the trigger. See the table below for allowable values. If using
a level trigger in conjunction with a pulse-width trigger, see the
description of the direction argument to

ps5000aSetPulseWidthQualifier for more information.

aux: not used

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_INVALID_PARAMETER

PS5000A_THRESHOLD_DIRECTION constants
PS5000A_ABOVE for gated triggers: above the upper threshold
PS5000A_ABOVE_LOWER for gated triggers: above the lower threshold
PS5000A_BELOW for gated triggers: below the upper threshold
PS5000A_BELOW_LOWER for gated triggers: below the lower threshold
PS5000A_RISING for threshold triggers: rising edge, using upper

threshold
PS5000A_RISING_LOWER for threshold triggers: rising edge, using lower

threshold
PS5000A_FALLING for threshold triggers: falling edge, using upper

threshold
PS5000A_FALLING_LOWER for threshold triggers: falling edge, using lower

threshold
PS5000A_RISING_OR_FALLING for threshold triggers: either edge
PS5000A_INSIDE for window-qualified triggers: inside window
PS5000A_OUTSIDE for window-qualified triggers: outside window
PS5000A_ENTER for window triggers: entering the window
PS5000A_EXIT for window triggers: leaving the window
PS5000A_ENTER_OR_EXIT for window triggers: either entering or leaving

the window
PS5000A_POSITIVE_RUNT for window-qualified triggers
PS5000A_NEGATIVE_RUNT for window-qualified triggers
PS5000A_NONE no trigger

API functions98

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.58 ps5000aSetTriggerChannelProperties
PICO_STATUS ps5000aSetTriggerChannelProperties
(

int16_t handle,
PS5000A_TRIGGER_CHANNEL_PROPERTIES * channelProperties,
int16_t nChannelProperties,
int16_t auxOutputEnable,
int32_t autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability All modes

Arguments handle, the handle of the required device.

* channelProperties, a pointer to an array of

PS5000A_TRIGGER_CHANNEL_PROPERTIES structures describing the

requested properties. The array can contain a single element
describing the properties of one channel, or a number of elements
describing several channels. If NULL is passed, triggering is switched

off.

nChannelProperties, the size of the channelProperties array.

If zero, triggering is switched off.

auxOutputEnable: not used

autoTriggerMilliseconds, the time in milliseconds for which the

scope device will wait before collecting data if no trigger event occurs.
If this is set to zero, the scope device will wait indefinitely for a
trigger.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_TRIGGER_ERROR
PICO_MEMORY
PICO_INVALID_TRIGGER_PROPERTY
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

PicoScope 5000 Series (A API) Programmer's Guide 99

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.58.1 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps5000aSetTriggerChannelProperties in

the channelProperties argument to specify the trigger mechanism, and is defined

as follows: -

typedef struct tPS5000ATriggerChannelProperties
{

int16_t thresholdUpper;
uint16_t thresholdUpperHysteresis;
int16_t thresholdLower;
uint16_t thresholdLowerHysteresis;
PS5000A_CHANNEL channel;
PS5000A_THRESHOLD_MODE thresholdMode;

} PS5000A_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the
#pragma pack() instruction.

Elements thresholdUpper, the upper threshold at which the trigger must

fire. This is scaled in 16-bit ADC counts at the currently selected range
for that channel.

thresholdUpperHysteresis, the hysteresis by which the trigger

must exceed the upper threshold before it will fire. It is scaled in 16-
bit counts.

thresholdLower, the lower threshold at which the trigger must

fire. This is scaled in 16-bit ADC counts at the currently selected range
for that channel.

thresholdLowerHysteresis, the hysteresis by which the trigger

must exceed the lower threshold before it will fire. It is scaled in 16-
bit counts.

channel, the channel to which the properties apply. This can be one

of the four input channels listed under ps5000aSetChannel, or

PS5000A_TRIGGER_AUX for the AUX input.

thresholdMode, either a level or window trigger. Use one of these

constants:
PS5000A_LEVEL
PS5000A_WINDOW

API functions100

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.59 ps5000aSetTriggerDelay
PICO_STATUS ps5000aSetTriggerDelay
(

int16_t handle,
uint32_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability All modes (but delay is ignored in streaming mode)

Arguments handle, the handle of the required device

delay, the time between the trigger occurring and the first sample.

For example, if delay = 100 then the scope would wait 100 sample

periods before sampling. At a timebase of 500 MS/s, or 2 ns per
sample, the total delay would then be:

100 x 2 ns = 200 ns

Range: 0 to MAX_DELAY_COUNT

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 101

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.60 ps5000aSigGenArbitraryMinMaxValues
PICO_STATUS ps5000aSigGenArbitraryMinMaxValues
(

int16_t handle,
int16_t * minArbitraryWaveformValue,
int16_t * maxArbitraryWaveformValue,
uint32_t * minArbitraryWaveformSize,
uint32_t * maxArbitraryWaveformSize

)

This function returns the range of possible sample values and waveform buffer sizes
that can be supplied to ps5000aSetSignGenArbitrary for setting up the arbitrary

waveform generator (AWG). These values vary between different models in the
PicoScope 5000 Series.

Applicability All models with AWG

Arguments handle, the handle of the required device.

minArbitraryWaveformValue, on exit, the lowest sample value

allowed in the arbitraryWaveform buffer supplied to

ps5000aSetSignGenArbitrary.

maxArbitraryWaveformValue, on exit, the highest sample value

allowed in the arbitraryWaveform buffer supplied to

ps5000aSetSignGenArbitrary.

minArbitraryWaveformSize, on exit, the minimum value

allowed for the arbitraryWaveformSize argument supplied to

ps5000aSetSignGenArbitrary.

maxArbitraryWaveformSize, on exit, the maximum value

allowed for the arbitraryWaveformSize argument supplied to

ps5000aSetSignGenArbitrary.

Returns PICO_OK
PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not

have an arbitrary waveform generator.
PICO_NULL_PARAMETER, if all the parameter pointers are NULL.
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION

API functions102

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.61 ps5000aSigGenFrequencyToPhase
PICO_STATUS ps5000aSigGenFrequencyToPhase
(

int16_t handle,
double frequency,
PS5000A_INDEX_MODE indexMode,
uint32_t bufferLength,
uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary
waveform generator (AWG). The value returned depends on the length of the buffer,
the index mode passed and the device model. The phase count can then be sent to the
driver through ps5000aSetSigGenArbitrary or

ps5000aSetSigGenPropertiesArbitrary.

Applicability All models with AWG

Arguments handle, the handle of the required device.

frequency, the required AWG output frequency.

indexMode, see AWG index modes.

bufferLength, the number of samples in the AWG buffer.

phase, on exit, the deltaPhase argument to be sent to the AWG

setup function

Returns PICO_OK
PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not

have an AWG.
PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE, if the frequency is out

of range.
PICO_NULL_PARAMETER, if phase is a NULL pointer.

PICO_SIG_GEN_PARAM, if indexMode or bufferLength is out of

range.
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 103

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.62 ps5000aSigGenSoftwareControl
PICO_STATUS ps5000aSigGenSoftwareControl
(

int16_t handle,
int16_t state

)

This function causes a trigger event, or starts and stops gating. It is used when the
signal generator is set to SIGGEN_SOFT_TRIG.

Gating occurs when the trigger type is set to either PS5000A_SIGGEN_GATE_HIGH or

PS5000A_SIGGEN_GATE_LOW. With other trigger types, calling this function causes

the signal generator to trigger immediately.

Applicability Use with ps5000aSetSigGenBuiltIn or

ps5000aSetSigGenArbitrary.

Arguments handle, the handle of the required device

state, sets the trigger gate high or low:

0: gate low condition
<> 0: gate high condition

Ignored if trigger type is not set to either
PS5000A_SIGGEN_GATE_HIGH or PS5000A_SIGGEN_GATE_LOW.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_TRIGGER_SOURCE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

API functions104

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.63 ps5000aStop
PICO_STATUS ps5000aStop
(

int16_t handle
)

This function stops the scope device from sampling data.

When running the device in streaming mode, you should always call this function after
the end of a capture to ensure that the scope is ready for the next capture.

When running the device in block mode, ETS mode or rapid block mode, you can call
this function to interrupt data capture.

Note that if you are using block mode and call this function before the oscilloscope is
ready, no capture will be available and the driver will return
PICO_NO_SAMPLES_AVAILABLE.

Applicability All modes

Arguments handle, the handle of the required device.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 5000 Series (A API) Programmer's Guide 105

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

4.64 ps5000aStreamingReady (callback)
typedef void (CALLBACK *ps5000aStreamingReady)
(

int16_t handle,
int32_t noOfSamples,
uint32_t startIndex,
int16_t overflow,
uint32_t triggerAt,
int16_t triggered,
int16_t autoStop,
void * pParameter

)

This callback function is part of your application. You register it with the driver using
ps5000aGetStreamingLatestValues, and the driver calls it back when streaming-

mode data is ready. You can then download the data using the
ps5000aGetValuesAsync function.

Your callback function should do nothing more than copy the data to another buffer
within your application. To maintain the best application performance, the function
should return as quickly as possible without attempting to process or display the data.

Applicability Streaming mode only

Arguments handle, the handle of the device returning the samples.

noOfSamples, the number of samples to collect.

startIndex, an index to the first valid sample in the buffer. This is

the buffer that was previously passed to ps5000aSetDataBuffer.

overflow, returns a set of flags that indicate whether an

overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 denoting Channel A.

triggerAt, an index to the buffer indicating the location of the

trigger point relative to startIndex. This parameter is valid only

when triggered is non-zero.

triggered, a flag indicating whether a trigger occurred. If non-

zero, a trigger occurred at the location indicated by triggerAt.

autoStop, the flag that was set in the call to

ps5000aRunStreaming.

* pParameter, a void pointer passed from

ps5000aGetStreamingLatestValues. The callback function can

write to this location to send any data, such as a status flag, back to
the application.

Returns nothing

API functions106

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

4.65 Wrapper functions
The software development kits (SDKs) for PicoScope devices contain wrapper dynamic
link library (DLL) files in the lib subdirectory of your SDK installation for 32-bit and

64-bit systems. The wrapper functions provided by the wrapper DLLs are for use with
programming languages such as MathWorks MATLAB, National Instruments LabVIEW
and Microsoft Excel VBA that do not support features of the C programming language
such as callback functions.

The source code contained in the wrapper projects contains a description of the
functions and the input and output parameters.

Below we explain the sequence of calls required to capture data in streaming mode
using the wrapper API functions.

The ps5000aWrap.dll wrapper DLL has a callback function for streaming data

collection that copies data from the driver buffer specified to a temporary application
buffer of the same size. To do this, the driver and application buffers must be
registered with the wrapper and the corresponding channel(s) must be specified as
being enabled. You should process the data in the temporary application buffer
accordingly, for example by copying the data into a large array.

Procedure:
1. Open the oscilloscope using ps5000aOpenUnit.

1a. Inform the wrapper of the number of channels on the device by calling
setChannelCount.

2. Select channels, ranges and AC/DC coupling using ps5000aSetChannel.

2a. Inform the wrapper which channels have been enabled by calling
setEnabledChannels.

3. Use the appropriate trigger setup functions. For programming languages that do not
support structures, use the wrapper's advanced trigger setup functions.

4. Call ps5000aSetDataBuffer (or for aggregated data collection

ps5000aSetDataBuffers) to tell the driver where your data buffer(s) is(are).

4a. Register the data buffer(s) with the wrapper and set the application buffer(s) into
which the data will be copied. Call setAppAndDriverBuffers (or

setMaxMinAppAndDriverBuffers for aggregated data collection).

5. Start the oscilloscope running using ps5000aRunStreaming.

6. Loop and call GetStreamingLatestValues and IsReady to get data and flag

when the wrapper is ready for data to be retrieved.

6a. Call the wrapper’s AvailableData function to obtain information on the number

of samples collected and the start index in the buffer.

6b. Call the wrapper’s IsTriggerReady function for information on whether a trigger

has occurred and the trigger index relative to the start index in the buffer.

7. Process data returned to your application data buffers.

8. Call AutoStopped if the autoStop parameter has been set to TRUE in the call to

ps5000aRunStreaming.

PicoScope 5000 Series (A API) Programmer's Guide 107

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

9. Repeat steps 6 to 8 until AutoStopped returns true or you wish to stop data

collection.

10. Call ps5000aStop, even if the autoStop parameter was set to TRUE.

11. To disconnect a device, call ps5000aCloseUnit.

Programming examples108

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

5 Programming examples
Your PicoScope SDK installation includes programming examples in various languages
and development environments.

PicoScope 5000 Series (A API) Programmer's Guide 109

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

6 Driver status codes
Every function in the ps5000a driver returns a driver status code from the following
list of PICO_STATUS values. These definitions can also be found in the file

picoStatus.h, which is included in the Pico Technology SDK. Not all codes apply to

the ps5000a driver.

Code
(hex)

Symbol and meaning

00 PICO_OK
The oscilloscope is functioning correctly

01 PICO_MAX_UNITS_OPENED
An attempt has been made to open more than PS5000A_MAX_UNITS

02 PICO_MEMORY_FAIL
Not enough memory could be allocated on the host machine

03 PICO_NOT_FOUND
No oscilloscope could be found

04 PICO_FW_FAIL
Unable to download firmware

05 PICO_OPEN_OPERATION_IN_PROGRESS
06 PICO_OPERATION_FAILED
07 PICO_NOT_RESPONDING

The oscilloscope is not responding to commands from the PC

08 PICO_CONFIG_FAIL
The configuration information in the oscilloscope has become corrupt or is missing

09 PICO_KERNEL_DRIVER_TOO_OLD
The picopp.sys file is too old to be used with the device driver

0A PICO_EEPROM_CORRUPT
The EEPROM has become corrupt, so the device will use a default setting

0B PICO_OS_NOT_SUPPORTED
The operating system on the PC is not supported by this driver

0C PICO_INVALID_HANDLE
There is no device with the handle value passed

0D PICO_INVALID_PARAMETER
A parameter value is not valid

0E PICO_INVALID_TIMEBASE
The timebase is not supported or is invalid

0F PICO_INVALID_VOLTAGE_RANGE
The voltage range is not supported or is invalid

10 PICO_INVALID_CHANNEL
The channel number is not valid on this device or no channels have been set

11 PICO_INVALID_TRIGGER_CHANNEL
The channel set for a trigger is not available on this device

12 PICO_INVALID_CONDITION_CHANNEL
The channel set for a condition is not available on this device

13 PICO_NO_SIGNAL_GENERATOR
The device does not have a signal generator

14 PICO_STREAMING_FAILED
Streaming has failed to start or has stopped without user request

15 PICO_BLOCK_MODE_FAILED
Block failed to start - a parameter may have been set wrongly

16 PICO_NULL_PARAMETER
A parameter that was required is NULL

18 PICO_DATA_NOT_AVAILABLE
No data is available from a run block call

Driver status codes110

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

19 PICO_STRING_BUFFER_TOO_SMALL
The buffer passed for the information was too small

1A PICO_ETS_NOT_SUPPORTED
ETS is not supported on this device

1B PICO_AUTO_TRIGGER_TIME_TOO_SHORT
The auto trigger time is less than the time it will take to collect the pre-trigger data

1C PICO_BUFFER_STALL
The collection of data has stalled as unread data would be overwritten

1D PICO_TOO_MANY_SAMPLES
Number of samples requested is more than available in the current memory segment

1E PICO_TOO_MANY_SEGMENTS
Not possible to create number of segments requested

1F PICO_PULSE_WIDTH_QUALIFIER
A null pointer has been passed in the trigger function or one of the parameters is out
of range

20 PICO_DELAY
One or more of the hold-off parameters are out of range

21 PICO_SOURCE_DETAILS
One or more of the source details are incorrect

22 PICO_CONDITIONS
One or more of the conditions are incorrect

23 PICO_USER_CALLBACK
The driver's thread is currently in the ps5000aBlockReady or

ps5000aStreamingReady callback function and therefore the action cannot be

carried out

24 PICO_DEVICE_SAMPLING
An attempt is being made to get stored data while streaming. Either stop streaming by
calling ps5000aStop, or use ps5000aGetStreamingLatestValues.

25 PICO_NO_SAMPLES_AVAILABLE
...because a run has not been completed

26 PICO_SEGMENT_OUT_OF_RANGE
The memory index is out of range

27 PICO_BUSY
Data cannot be returned yet

28 PICO_STARTINDEX_INVALID
The start time to get stored data is out of range

29 PICO_INVALID_INFO
The information number requested is not a valid number

2A PICO_INFO_UNAVAILABLE
The handle is invalid so no information is available about the device. Only
PICO_DRIVER_VERSION is available.

2B PICO_INVALID_SAMPLE_INTERVAL
The sample interval selected for streaming is out of range

2C PICO_TRIGGER_ERROR
2D PICO_MEMORY

Driver cannot allocate memory

35 PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
The combined peak to peak voltage and the analog offset voltage exceed the allowable
voltage the signal generator can produce

36 PICO_DELAY_NULL
NULL pointer passed as delay parameter

37 PICO_INVALID_BUFFER
The buffers for overview data have not been set while streaming

38 PICO_SIGGEN_OFFSET_VOLTAGE
The analog offset voltage is out of range

39 PICO_SIGGEN_PK_TO_PK

PicoScope 5000 Series (A API) Programmer's Guide 111

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

The analog peak to peak voltage is out of range

3A PICO_CANCELLED
A block collection has been cancelled

3B PICO_SEGMENT_NOT_USED
The segment index is not currently being used

3C PICO_INVALID_CALL
The wrong GetValues function has been called for the collection mode in use

3F PICO_NOT_USED
The function is not available

40 PICO_INVALID_SAMPLERATIO
The aggregation ratio requested is out of range

41 PICO_INVALID_STATE
Device is in an invalid state

42 PICO_NOT_ENOUGH_SEGMENTS
The number of segments allocated is fewer than the number of captures requested

43 PICO_DRIVER_FUNCTION
You called a driver function while another driver function was still being processed

PICO_RESERVED

45 PICO_INVALID_COUPLING
An invalid coupling type was specified in ps5000aSetChannel

46 PICO_BUFFERS_NOT_SET
An attempt was made to get data before a data buffer was defined

47 PICO_RATIO_MODE_NOT_SUPPORTED
The selected downsampling mode (used for data reduction) is not allowed

49 PICO_INVALID_TRIGGER_PROPERTY
An invalid parameter was passed to ps5000aSetTriggerChannelProperties

4A PICO_INTERFACE_NOT_CONNECTED
The driver was unable to contact the oscilloscope

4D PICO_SIGGEN_WAVEFORM_SETUP_FAILED
A problem occurred in ps5000aSetSigGenBuiltIn or

ps5000aSetSigGenArbitrary

4E PICO_FPGA_FAIL
FPGA not successfully set up

4F PICO_POWER_MANAGER

50 PICO_INVALID_ANALOGUE_OFFSET
An impossible analog offset value was specified in ps5000aSetChannel

51 PICO_PLL_LOCK_FAILED
Unable to configure the oscilloscope

52 PICO_ANALOG_BOARD
The oscilloscope's analog board is not detected, or is not connected to the digital
board

53 PICO_CONFIG_FAIL_AWG
Unable to configure the signal generator

54 PICO_INITIALISE_FPGA
The FPGA cannot be initialized, so unit cannot be opened

56 PICO_EXTERNAL_FREQUENCY_INVALID
The frequency for the external clock is not within ±5% of the stated value

57 PICO_CLOCK_CHANGE_ERROR
The FPGA could not lock the clock signal

58 PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH
You are trying to configure the AUX input as both a trigger and a reference clock

59 PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH
You are trying to configure the AUX input as both a pulse width qualifier and a
reference clock

5A PICO_UNABLE_TO_OPEN_SCALING_FILE
The scaling file set can not be opened

Driver status codes112

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

5B PICO_MEMORY_CLOCK_FREQUENCY
The frequency of the memory is reporting incorrectly

5C PICO_I2C_NOT_RESPONDING
The I2C that is being actioned is not responding to requests

5D PICO_NO_CAPTURES_AVAILABLE
There are no captures available and therefore no data can be returned

5E PICO_NOT_USED_IN_THIS_CAPTURE_MODE
The capture mode the device is currently running in does not support the current
request

103 PICO_GET_DATA_ACTIVE
Reserved

104 PICO_IP_NETWORKED
The device is currently connected via the IP Network socket and thus the call made is
not supported

105 PICO_INVALID_IP_ADDRESS
An IP address that is not correct has been passed to the driver

106 PICO_IPSOCKET_FAILED
The IP socket has failed

107 PICO_IPSOCKET_TIMEDOUT
The IP socket has timed out

108 PICO_SETTINGS_FAILED
The settings requested have failed to be set

109 PICO_NETWORK_FAILED
The network connection has failed

10A PICO_WS2_32_DLL_NOT_LOADED
Unable to load the WS2 DLL

10B PICO_INVALID_IP_PORT
The IP port is invalid

10C PICO_COUPLING_NOT_SUPPORTED
The type of coupling requested is not supported on the opened device

10D PICO_BANDWIDTH_NOT_SUPPORTED
Bandwidth limit is not supported on the opened device

10E PICO_INVALID_BANDWIDTH
The value requested for the bandwidth limit is out of range

10F PICO_AWG_NOT_SUPPORTED
The arbitrary waveform generator is not supported by the opened device

110 PICO_ETS_NOT_RUNNING
Data has been requested with ETS mode set but run block has not been called, or stop
has been called

111 PICO_SIG_GEN_WHITENOISE_NOT_SUPPORTED
White noise is not supported on the opened device

112 PICO_SIG_GEN_WAVETYPE_NOT_SUPPORTED
The wave type requested is not supported by the opened device

116 PICO_SIG_GEN_PRBS_NOT_SUPPORTED
Siggen does not generate pseudo-random binary sequence

117 PICO_ETS_NOT_AVAILABLE_WITH_LOGIC_CHANNELS
When a digital port is enabled, ETS sample mode is not available for use

118 PICO_WARNING_REPEAT_VALUE
Not applicable to this device

119 PICO_POWER_SUPPLY_CONNECTED
4-channel only - the DC power supply is connected

11A PICO_POWER_SUPPLY_NOT_CONNECTED
4-channel only - the DC power supply isn’t connected

11B PICO_POWER_SUPPLY_REQUEST_INVALID
Incorrect power mode passed for current power source

11C PICO_POWER_SUPPLY_UNDERVOLTAGE

PicoScope 5000 Series (A API) Programmer's Guide 113

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

The supply voltage from the USB source is too low

11D PICO_CAPTURING_DATA
The device is currently busy capturing data

11E PICO_USB3_0_DEVICE_NON_USB3_0_PORT
A Pico USB 3.0 device has been connected to a non-USB 3.0 port

11F PICO_NOT_SUPPORTED_BY_THIS_DEVICE
A function has been called that is not supported by the current device variant

120 PICO_INVALID_DEVICE_RESOLUTION
The device resolution is invalid (out of range)

121 PICO_INVALID_NO_CHANNELS_FOR_RESOLUTION
The number of channels which can be enabled is limited in 15 and 16-bit modes

122 PICO_CHANNEL_DISABLED_DUE_TO_USB_POWERED
USB power not sufficient to power all channels

Enumerated types and constants114

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

7 Enumerated types and constants
The enumerated types used used by the ps5000a driver are defined in the file
ps5000aApi.h. We recommend that you refer to these constants by name unless

your programming language allows only numerical values.

PicoScope 5000 Series (A API) Programmer's Guide 115

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

8 Numeric data types
Here is a list of the sizes and ranges of the numeric data types used in the ps5000a
API.

Type Bits Signed or unsigned?
int16_t 16 signed

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754)

int64_t 64 signed

double 64 signed (IEEE 754)

Glossary116

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

9 Glossary
Aggregation. The ps5000a driver can use a method called aggregation to reduce the
amount of data your application needs to process. This means that for every block of
consecutive samples, it stores only the minimum and maximum values. You can set
the number of samples in each block, called the aggregation parameter, when you call
ps5000aRunStreaming for real-time capture, and when you call

ps5000aGetStreamingLatestValues to obtain post-processed data.

Aliasing. An effect that can cause digital oscilloscopes to display fast-moving
waveforms incorrectly, by showing spurious low-frequency signals ("aliases") that do
not exist in the input. To avoid this problem, choose a sampling rate that is at least
twice the frequency of the fastest-changing input signal.

Analog bandwidth. All oscilloscopes have an upper limit to the range of frequencies
at which they can measure accurately. The analog bandwidth of an oscilloscope is
defined as the frequency at which a displayed sine wave has half the power of the
input sine wave (or, equivalently, about 71% of the amplitude).

Block mode. A sampling mode in which the computer prompts the oscilloscope to
collect a block of data into its internal memory before stopping the oscilloscope and
transferring the whole block into computer memory. This mode of operation is
effective when the input signal being sampled is high frequency. Note: To avoid
aliasing effects, the maximum input frequency must be less than half the sampling
rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer
memory is used by the oscilloscope to temporarily store data before transferring it to
the PC.

Callback. A mechanism that the ps5000a driver uses to communicate asynchronously
with your application. At design time, you add a function (a callback function) to your
application to deal with captured data. At run time, when you request captured data
from the driver, you also pass it a pointer to your function. The driver then returns
control to your application, allowing it to perform other tasks until the data is ready.
When this happens, the driver calls your function in a new thread to signal that the
data is ready. It is then up to your function to communicate this fact to the rest of
your application.

Coupling mode. This mode selects either AC or DC coupling in the oscilloscope's input
path. Use AC mode for small signals that may be superimposed on a DC level. Use DC
mode for measuring absolute voltage levels. Set the coupling mode using
ps5000aSetChannel.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by
accumulating information over many similar wave cycles. This means the oscilloscope
can capture fast-repeating signals that have a higher frequency than the maximum
sampling rate. Note: ETS should not be used for one-shot or non-repetitive signals.

External trigger. This is the BNC socket marked EXT or Ext. It can be used to start a
data collection run but cannot be used to record data.

Flexible power. The 5000 Series oscilloscopes can be powered by either the two-
headed USB cable supplied for obtaining power from two USB ports, or a single USB
port and the AC adapter (included with 4-channel models only).

PicoScope 5000 Series (A API) Programmer's Guide 117

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope is capable of acquiring per second. Maximum sample rates are given in
MS/s (megasamples per second). The higher the sampling capability of the
oscilloscope, the more accurate the representation of the high frequencies in a fast
signal.

Overvoltage. Any input voltage to the oscilloscope must not exceed the overvoltage
limit, measured with respect to ground, otherwise the oscilloscope may be
permanently damaged.

Signal generator. The signal generator output is the BNC socket marked GEN or Gen
on the oscilloscope. If you connect a BNC cable between this and one of the channel
inputs, you can send a signal into one of the channels. It can generate a sine, square
or triangle wave that can be swept back and forth.

Streaming mode. A sampling mode in which the oscilloscope samples data and
returns it to the computer in an unbroken stream. This mode of operation is effective
when the input signal being sampled contains only low frequencies.

USB 1.1. An early version of the Universal Serial Bus standard found on older PCs.
Although your PicoScope 5000 Series device will work with a USB 1.1 port, it will
operate much more slowly than with a USB 2.0 or 3.0 port.

USB 2.0. A typical USB 2.0 port supports a data transfer rate that is 40 times faster
than USB 1.1. USB 2.0 is backwards-compatible with USB 1.1.

USB 3.0. A typical USB 3.0 port supports a data transfer rate that is 10 times faster
than USB 2.0. USB 3.0 is backwards-compatible with USB 2.0 and USB 1.1.

Vertical resolution. A value, in bits, indicating the degree of precision with which the
oscilloscope can turn input voltages into digital values. Calculation techniques can
improve the effective resolution.

Voltage range. The voltage range is the difference between the maximum and
minimum voltages that can be accurately captured by the oscilloscope.

PicoScope 5000 Series (A API) Programmer's Guide 119

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

Index

A
AC/DC control 116

AC/DC coupling 72

Access 2

ADC count 59, 61

Aggregation 18, 116

Aliasing 116

Analog bandwidth 116

Analog offset 33, 72

API function calls 24

Arbitrary waveform generator 84, 86

buffer lengths 101

sample values 101

B
Bandwidth limiter 72

Block mode 6, 7, 8, 116

asynchronous call 10

callback 26

polling status 57

running 67

using 9

Buffer size 116

C
Callback 116

Callback function 7

block mode 26

definition 30

ETS mode 16

streaming mode 105

Channels

enabling 72

settings 72

Closing units 28

Communication 66

Connection 66

Constants 114

Copyright 2

Coupling mode 116

Coupling type, setting 72

D
Data acquisition 18

Data buffers

declaring 74

declaring, aggregation mode 75

Data retention 8

Downsampling 8, 47

maximum ratio 36

modes 48

Driver 4

status codes 109

E
Enabling channels 72

Enumerated types 114

Enumerating oscilloscopes 31

ETS 116

overview 16

setting time buffers 78, 79

setting up 77

using 17

External trigger 116

F
Fitness for purpose 2

Flexible power 116

Functions

overview 24

ps5000aBlockReady 26

ps5000aChangePowerSource 27

ps5000aCloseUnit 28

ps5000aCurrentPowerSource 29

ps5000aDataReady 30

ps5000aEnumerateUnits 31

ps5000aFlashLed 32

ps5000aGetAnalogueOffset 33

ps5000aGetChannelInformation 34

ps5000aGetDeviceResolution 35

ps5000aGetMaxDownSampleRatio 36

ps5000aGetMaxSegments 37

ps5000aGetNoOfCaptures 38, 39

ps5000aGetStreamingLatestValues 40

ps5000aGetTimebase 21, 41

ps5000aGetTimebase2 42

ps5000aGetTriggerTimeOffset 43

ps5000aGetTriggerTimeOffset64 44

ps5000aGetUnitInfo 45

ps5000aGetValues 10, 47

ps5000aGetValuesAsync 10, 49

ps5000aGetValuesBulk 50

ps5000aGetValuesOverlapped 51

ps5000aGetValuesOverlappedBulk 53

ps5000aGetValuesTriggerTimeOffsetBulk 54

Index120

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.ps5000apg.en r3

Functions

ps5000aGetValuesTriggerTimeOffsetBulk64
 56

ps5000aIsReady 57

ps5000aIsTriggerOrPulseWidthQualifierEnabled
 58

ps5000aMaximumValue 5, 59

ps5000aMemorySegments 60

ps5000aMinimumValue 5, 61

ps5000aNoOfStreamingValues 62

ps5000aOpenUnit 63

ps5000aOpenUnitAsync 64

ps5000aOpenUnitProgress 65

ps5000aPingUnit 66

ps5000aRunBlock 67

ps5000aRunStreaming 69

ps5000aSetChannel 5, 72

ps5000aSetDataBuffer 74

ps5000aSetDataBuffers 75

ps5000aSetDeviceResolution 76

ps5000aSetEts 16, 77

ps5000aSetEtsTimeBuffer 78

ps5000aSetEtsTimeBuffers 79

ps5000aSetNoOfCaptures 80

ps5000aSetPulseWidthQualifier 81

ps5000aSetSigGenArbitrary 84

ps5000aSetSigGenBuiltIn 88

ps5000aSetSigGenPropertiesArbitrary 92

ps5000aSetSigGenPropertiesBuiltIn 93

ps5000aSetSimpleTrigger 6, 94

ps5000aSetTriggerChannelConditions 6, 95

ps5000aSetTriggerChannelDirections 6, 97

ps5000aSetTriggerChannelProperties 6, 98

ps5000aSetTriggerDelay 100

ps5000aSigGenArbitraryMinMaxValues 101

ps5000aSigGenFrequencyToPhase 102

ps5000aSigGenSoftwareControl 103

ps5000aStop 10, 104

ps5000aStreamingReady 105

G
Glossary 116

H
Hysteresis 99

I
Index modes 86

Input range, selecting 72

Intended use 1

L
LED

flashing 32

Legal information 2

Liability 2

M
Memory in scope 8

Mission-critical applications 2

Multi-unit operation 23

N
Numeric data types 115

O
One-shot signals 16

Opening a unit 63

checking progress 65

without blocking 64

Overvoltage 117

P
PC Oscilloscope 1

PC requirements 3

PICO_STATUS enum type 109

PicoScope 5000 Series 1

PicoScope software 1, 4, 109

Power options

flexible power options 22

Power source 27, 29

Programming examples 108

ps5000a.dll 4

PS5000A_CONDITION_ constants 83

PS5000A_LEVEL constant 99

PS5000A_PWQ_CONDITIONS structure 83

PS5000A_RATIO_MODE_AGGREGATE 48

PS5000A_RATIO_MODE_AVERAGE 48

PS5000A_RATIO_MODE_DECIMATE 48

PS5000A_TIME_UNITS constant 43, 44

PS5000A_TRIGGER_CHANNEL_PROPERTIES
structure 99

PS5000A_TRIGGER_CONDITION constants 96

PS5000A_TRIGGER_CONDITIONS 95

PS5000A_TRIGGER_CONDITIONS structure 96

PS5000A_WINDOW constant 99

Pulse-width qualifier 81

conditions 83

requesting status 58

PicoScope 5000 Series (A API) Programmer's Guide 121

Copyright © 2013–2016 Pico Technology Limited. All rights reserved. ps5000apg.en r3

R
Ranges 34

Rapid block mode 7, 11, 38, 39

aggregation 15

no aggregation 13

setting number of captures 80

using 11

Resolution

PS5000A_DEVICE_RESOLUTION 63

vertical 117

Retrieving data 47, 49

block mode, deferred 51

rapid block mode 50

rapid block mode, deferred 53

stored 20

streaming mode 40

Retrieving times

rapid block mode 54, 56

S
Sampling rate

maximum 8, 117

Scaling 5

Segmented memory 8, 9, 18

ps5000aMemorySegments 60

Serial numbers 31

Setup time 8

Signal generator 117

arbitrary waveforms 84

built-in waveforms 88

calculating phase 102

software trigger 103

Spectrum analyzer 1

Status codes 109

Stopping sampling 104

Streaming mode 7, 18, 117

callback 105

getting number of samples 62

retrieving data 40

running 69

using 18

Support 2

T
Threshold voltage 6

Time buffers

setting for ETS 78, 79

Timebase 21

calculating 41, 42

Trademarks 2

Trigger 6

channel properties 98

conditions 95, 96

delay 100

directions 97

external 5

pulse-width qualifier 81

pulse-width qualifier conditions 83

requesting status 58

setting up 94

stability 16

time offset 43, 44

U
Unit information, reading 45

Upgrades 2

Usage 2

USB 1, 3, 117

hub 23

V
Viruses 2

Voltage range 5, 117

selecting 72

W
WinUsb.sys 4

UK headquarters

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

sales@picotech.com
support@picotech.com

www.picotech.com

Copyright © 2013–2016 Pico Technology Limited. All rights reserved.

ps5000apg.en r3 2016-06-29

USA headquarters

Pico Technology
320 N Glenwood Blvd
Tyler
Texas 75702
United States of America

Tel: +1 800 591 2796
Fax: +1 620 272 0981

	Welcome
	Introduction
	License agreement
	Trademarks
	System requirements

	Programming with the PicoScope 5000 Series (A API)
	Driver
	Voltage ranges
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	Power options
	Combining several oscilloscopes

	API functions
	ps5000aBlockReady (callback)
	ps5000aChangePowerSource
	ps5000aCloseUnit
	ps5000aCurrentPowerSource
	ps5000aDataReady (callback)
	ps5000aEnumerateUnits
	ps5000aFlashLed
	ps5000aGetAnalogueOffset
	ps5000aGetChannelInformation
	ps5000aGetDeviceResolution
	ps5000aGetMaxDownSampleRatio
	ps5000aGetMaxSegments
	ps5000aGetNoOfCaptures
	ps5000aGetNoOfProcessedCaptures
	ps5000aGetStreamingLatestValues
	ps5000aGetTimebase
	ps5000aGetTimebase2
	ps5000aGetTriggerTimeOffset
	ps5000aGetTriggerTimeOffset64
	ps5000aGetUnitInfo
	ps5000aGetValues
	Downsampling modes

	ps5000aGetValuesAsync
	ps5000aGetValuesBulk
	ps5000aGetValuesOverlapped
	Using the GetValuesOverlapped functions

	ps5000aGetValuesOverlappedBulk
	ps5000aGetValuesTriggerTimeOffsetBulk
	ps5000aGetValuesTriggerTimeOffsetBulk64
	ps5000aIsReady
	ps5000aIsTriggerOrPulseWidthQualifierEnabled
	ps5000aMaximumValue
	ps5000aMemorySegments
	ps5000aMinimumValue
	ps5000aNoOfStreamingValues
	ps5000aOpenUnit
	ps5000aOpenUnitAsync
	ps5000aOpenUnitProgress
	ps5000aPingUnit
	ps5000aRunBlock
	ps5000aRunStreaming
	ps5000aSetBandwidthFilter
	ps5000aSetChannel
	ps5000aSetDataBuffer
	ps5000aSetDataBuffers
	ps5000aSetDeviceResolution
	ps5000aSetEts
	ps5000aSetEtsTimeBuffer
	ps5000aSetEtsTimeBuffers
	ps5000aSetNoOfCaptures
	ps5000aSetPulseWidthQualifier
	ps5000a_PWQ_CONDITIONS structure

	ps5000aSetSigGenArbitrary
	AWG index modes
	Calculating deltaPhase

	ps5000aSetSigGenBuiltIn
	ps5000aSetSigGenBuiltInV2
	ps5000aSetSigGenPropertiesArbitrary
	ps5000aSetSigGenPropertiesBuiltIn
	ps5000aSetSimpleTrigger
	ps5000aSetTriggerChannelConditions
	PS5000A_TRIGGER_CONDITIONS structure

	ps5000aSetTriggerChannelDirections
	ps5000aSetTriggerChannelProperties
	PS5000A_TRIGGER_CHANNEL_PROPERTIES structure

	ps5000aSetTriggerDelay
	ps5000aSigGenArbitraryMinMaxValues
	ps5000aSigGenFrequencyToPhase
	ps5000aSigGenSoftwareControl
	ps5000aStop
	ps5000aStreamingReady (callback)
	Wrapper functions

	Programming examples
	Driver status codes
	Enumerated types and constants
	Numeric data types
	Glossary

