

PicoScope[®] 5000 Series (A API)

Flexible Resolution Oscilloscopes

Programmer's Guide

扫码二维码关注我们 或查找微信公众号:海洋仪器

ps5000apg.en r3 Copyright © 2013–2016 Pico Technology Limited. All rights reserved.

Contents

1 Welcome
2 Introduction
1 License agreement
2 Trademarks
3 System requirements
3 Programming with the PicoScope 5000 Series (A API)
1 Driver
2 Voltage ranges
3 Triggering
4 Sampling modes7
1 Block mode
2 Rapid block mode11
3 ETS (Equivalent Time Sampling)16
4 Streaming mode
5 Retrieving stored data
5 Timebases
6 Power options
7 Combining several oscilloscopes
4 API functions
1 ps5000aBlockReady (callback)
2 ps5000aChangePowerSource
3 ps5000aCloseUnit
4 ps5000aCurrentPowerSource
5 ps5000aDataReady (callback)
6 ps5000aEnumerateUnits
7 ps5000aFlashLed
8 ps5000aGetAnalogueOffset
9 ps5000aGetChannelInformation34
10 ps5000aGetDeviceResolution
11 ps5000aGetMaxDownSampleRatio36
12 ps5000aGetMaxSegments
13 ps5000aGetNoOfCaptures
14 ps5000aGetNoOfProcessedCaptures
15 ps5000aGetStreamingLatestValues 40
16 ps5000aGetTimebase
17 ps5000aGetTimebase2
18 ps5000aGetTriggerTimeOffset
19 ps5000aGetTriggerTimeOffset6444
20 ps5000aGetUnitInfo
21 ps5000aGetValues
1 Downsampling modes

22 ps5000aGetValuesAsync	49
23 ps5000aGetValuesBulk	50
24 ps5000aGetValuesOverlapped	51
1 Using the GetValuesOverlapped functions	51
25 ps5000aGetValuesOverlappedBulk	53
26 ps5000aGetValuesTriggerTimeOffsetBulk	54
27 ps5000aGetValuesTriggerTimeOffsetBulk64	56
28 ps5000alsReady	57
29 ps5000alsTriggerOrPulseWidthQualifierEnabled	58
30 ps5000aMaximumValue	59
31 ps5000aMemorySegments	60
32 ps5000aMinimumValue	61
33 ps5000aNoOfStreamingValues	62
34 ps5000aOpenUnit	63
35 ps5000aOpenUnitAsync	64
36 ps5000aOpenUnitProgress	65
37 ps5000aPingUnit	66
38 ps5000aRunBlock	67
39 ps5000aRunStreaming	69
40 ps5000aSetBandwidthFilter	71
41 ps5000aSetChannel	72
42 ps5000aSetDataBuffer	74
43 ps5000aSetDataBuffers	75
44 ps5000aSetDeviceResolution	76
45 ps5000aSetEts	77
46 ps5000aSetEtsTimeBuffer	78
47 ps5000aSetEtsTimeBuffers	79
48 ps5000aSetNoOfCaptures	80
49 ps5000aSetPulseWidthQualifier	81
1 ps5000a_PWQ_CONDITIONS structure	83
50 ps5000aSetSigGenArbitrary	84
1 AWG index modes	86
2 Calculating deltaPhase	86
51 ps5000aSetSigGenBuiltIn	88
52 ps5000aSetSigGenBuiltInV2	90
53 ps5000aSetSigGenPropertiesArbitrary	92
54 ps5000aSetSigGenPropertiesBuiltIn	93
55 ps5000aSetSimpleTrigger	94
56 ps5000aSetTriggerChannelConditions	95
1 PS5000A_TRIGGER_CONDITIONS structure	96
57 ps5000aSetTriggerChannelDirections	97
58 ps5000aSetTriggerChannelProperties	98
1 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure	99
59 ps5000aSetTriggerDelay	100

60 ps5000aSigGenArbitraryMinMaxValues	101
61 ps5000aSigGenFrequencyToPhase	102
62 ps5000aSigGenSoftwareControl	103
63 ps5000aStop	104
64 ps5000aStreamingReady (callback)	105
65 Wrapper functions	106
5 Programming examples	108
6 Driver status codes	109
7 Enumerated types and constants	114
8 Numeric data types	115
9 Glossary	116
Index	119

1 Welcome

The PicoScope 5000 A and B Series PC Oscilloscopes from Pico Technology are a range of high-specification, real-time measuring instruments that connect to the USB port of your computer. The series covers various options of portability, deep memory, fast sampling rates and high bandwidth, making it a highly versatile range that suits a wide range of applications. The oscilloscopes are all hispeed <u>USB 2.0</u> devices, also compatible with <u>USB 1.1</u> and <u>USB 3.0</u>.

This manual explains how to use the API (application programming interface) functions, so that you can develop your own programs to collect and analyze data from the oscilloscope.

The information in this manual applies to the following oscilloscopes:

PicoScope 5242A
 PicoScope 5243A
 PicoScope 5244A
 PicoScope 5442A
 PicoScope 5443A
 PicoScope 5444A

PicoScope 5242B
 PicoScope 5243B
 PicoScope 5244B
 PicoScope 5442B
 PicoScope 5443B
 PicoScope 5444B

The A models are high speed portable oscilloscopes, with a function generator.

The B models are as the A models, but feature an arbitrary waveform generator and deeper memory.

For information on any PicoScope 5000 Series oscilloscope, refer to the documentation on our <u>website</u>.

2 Introduction

2.1 License agreement

Grant of license. The material contained in this release is licensed, not sold. Pico Technology Limited ('Pico') grants a license to the person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of and agree to abide by these conditions.

Usage. The software in this release is for use only with Pico products or with data collected using Pico products.

Copyright. The software in this release is for use only with Pico products or with data collected using Pico products. You may copy and distribute the SDK without restriction, as long as you do not remove any Pico Technology copyright statements. The example programs in the SDK may be modified, copied and distributed for the purpose of developing programs to collect data using Pico products.

Liability. Pico and its agents shall not be liable for any loss or damage, howsoever caused, related to the use of Pico equipment or software, unless excluded by statute.

Fitness for purpose. No two applications are the same, so Pico cannot guarantee that its equipment or software is suitable for a given application. It is therefore the user's responsibility to ensure that the product is suitable for the user's application.

Mission-critical applications. Because the software runs on a computer that may be running other software products, and may be subject to interference from these other products, this license specifically excludes usage in 'mission-critical' applications, for example life-support systems.

Viruses. This software was continuously monitored for viruses during production. However, the user is responsible for virus checking the software once it is installed.

Support. No software is ever error-free, but if you are dissatisfied with the performance of this software, please contact our technical support staff.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the right to charge for updates or replacements sent out on physical media.

2.2 Trademarks

Pico Technology and **PicoScope** are trademarks of Pico Technology Limited, registered in the United Kingdom and other countries.

PicoScope and **Pico Technology** are registered in the U.S. Patent and Trademark Office.

Windows, **Excel** and **Visual Basic for Applications** are registered trademarks or trademarks of Microsoft Corporation in the USA and other countries. **LabVIEW** is a registered trademark of National Instruments Corporation. **MATLAB** is a registered trademark of The MathWorks, Inc.

2.3 System requirements

Using the Pico Technology SDK

To ensure that your <u>PicoScope 5000 Series</u> PC Oscilloscope operates correctly, you must have a computer with at least the minimum system requirements to run one of the supported operating systems, as shown in the following table. The performance of the oscilloscope will be better with a more powerful PC, and will benefit from a multicore processor.

Item	Specification	
Operating system	Windows 7, Windows 8 or Windows 10 32 bit and 64 bit versions	
Processor Memory Free disk space	As required by the operating system	
Ports	USB 2.0 or USB 3.0 port	

USB

The ps5000a driver offers <u>four different methods</u> of recording data, all of which support USB 2.0 and USB 3.0 connections. The 5000 A and B Series oscilloscopes are all hi-speed USB 2.0 devices: the transfer rate will not increase by using USB 3.0.

3 Programming with the PicoScope 5000 Series (A API)

The ps5000a.dll dynamic link library in the lib subdirectory of your SDK installation allows you to program a PicoScope 5000 Series (A API) oscilloscope using standard C <u>function calls</u>.

A typical program for capturing data consists of the following steps:

- Open the scope unit.
- Set up the input channels with the required voltage ranges and coupling type.
- Set up triggering.
- Start capturing data. (See <u>Sampling modes</u>, where programming is discussed in more detail.)
- Wait until the scope unit is ready.
- Stop capturing data.
- Copy data to a buffer.
- Close the scope unit.

Numerous <u>sample programs</u> are included in the SDK. These demonstrate how to use the functions of the driver software in each of the modes available.

3.1 Driver

Your application will communicate with a PicoScope 5000 A API driver called ps5000a.dll, which is supplied in 32-bit and 64-bit versions. This driver is used by all the 5000 A/B Series oscilloscopes (but not the PicoScope 5203 and 5204). The driver exports the ps5000a <u>function definitions</u> in standard C format, but this does not limit you to programming in C. You can use the API with any programming language that supports standard C calls.

The API driver depends on another DLL, picoipp.dll (which is supplied in 32-bit and 64-bit versions) and a low-level driver called WinUsb.sys. These are installed by the SDK and configured when you plug the oscilloscope into each USB port for the first time. Your application does not call these drivers directly.

3.2 Voltage ranges

You can set a device input channel to any voltage range from ±10 mV to ±20 V with the <u>ps5000aSetChannel</u> function. Each sample is scaled to 16 bits, and the minimum and maximum values returned to your application are given by ps5000aMinimumValue and ps5000aMaximumValue as follows:

Function	Voltage	Value returned	
		decimal hex	
8-bit			
ps5000aMaximumValue	maximum	+32 512	7F00
	zero	0	0000
<u>ps5000aMinimumValue</u>	minimum	-32 512	8100
12, 14, 15 and 16-bit			
ps5000aMaximumValue	maximum	+32 767	7FFF
	zero	0	0000
ps5000aMinimumValue	minimum	-32 767	8001

Example at 8-bit resolution

1. Call ps5000aSetChannel	+1 V-	 7F00	+32 512
with range set to			
PS5000A_1V.	+500 mV-	3F80	+16 256
2. Apply a sinewave input of 500 mV amplitude to the	0 V —	0000	0
oscilloscope.	–500 mV –	C080	-16 256
3. Capture some data using the desired <u>sampling mode</u> .	-1 V -	 8100	-32 512

4. The data will be encoded as shown opposite.

External trigger input

The external trigger input (marked EXT), where available, is scaled to a 16-bit value as follows:

Voltage	Constant	Digital value
-5 V	PS5000A_EXT_MIN_VALUE	-32 767
0 V		0
+5 V	PS5000A_EXT_MAX_VALUE	+32 767

3.3 Triggering

PicoScope 5000 Series oscilloscopes can either start collecting data immediately, or be programmed to wait for a **trigger** event to occur. In both cases you need to use the PicoScope 5000 trigger function ps5000aSetSimpleTrigger, which in turn calls:

- ps5000aSetTriggerChannelConditions
- ps5000aSetTriggerChannelDirections
- ps5000aSetTriggerChannelProperties

These can also be called individually, rather than using ps5000aSetSimpleTrigger in order to set up advanced trigger types such as pulse width.

A trigger event can occur when one of the signal or trigger input channels crosses a threshold voltage on either a rising or a falling edge. It is also possible to combine up to four inputs using the logic trigger function.

The driver supports these triggering methods:

Simple Edge
Advanced Edge
Windowing
Pulse width
Logic
Delay
Drop-out
Runt

The pulse width, delay and drop-out triggering methods additionally require the use of the pulse width qualifier function, <u>ps5000aSetPulseWidthQualifier</u>.

3.4 Sampling modes

PicoScope 5000 Series oscilloscopes can run in various sampling modes.

- Block mode. In this mode, the scope stores data in its buffer memory and then transfers it to the PC. When the data has been collected it is possible to examine the data, with an optional downsampling factor. The data is lost when a new run is started in the same <u>segment</u>, the settings are changed, or the scope is powered down.
- ETS mode. In this mode, it is possible to increase the effective sampling rate of the scope when capturing repetitive signals. It is a modified form of <u>block mode</u>.
- Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at a time with a minimum of delay between captures. You can use downsampling in this mode if you wish.
- Streaming mode. In this mode, data is passed directly to the PC without entire blocks being stored in the scope's buffer memory. This enables long periods of slow data collection for chart recorder and data-logging applications. Streaming mode supports downsampling and triggering, while providing fast streaming at up to:

8-bit mode

- 7.8125 MS/s (128 ns per sample) when three or four channels are active
- 15.625 MS/s (64 ns per sample) when two channels are active
- 31.25 MS/s (32 ns per sample) when one channel is active

12, 14, 15, and 16-bit modes*

- 3.906 MS/s (256 ns per sample) when three or four channels are active
- 7.8125 MS/s (128 ns per sample) when two channels are active
- 15.625 MS/s (64 ns per sample) when one channel is active

* 15-bit mode supports a maximum of two channels. 16-bit mode supports only one channel.

In all sampling modes, the driver returns data asynchronously using a <u>callback</u>. This is a call to one of the functions in your own application. When you request data from the scope, you pass to the driver a pointer to your callback function. When the driver has written the data to your buffer, it makes a callback (calls your function) to signal that the data is ready. The callback function then signals to the application that the data is available.

Because the callback is called asynchronously from the rest of your application, in a separate thread, you must ensure that it does not corrupt any global variables while it runs.

For compatibility of programming environments not supporting callback, polling of the driver is available in block mode.

Note: The Oversampling feature has been replaced by PS5000A_RATIO_MODE_AVERAGE.

3.4.1 Block mode

In **block mode**, the computer prompts a PicoScope 5000 Series oscilloscope to collect a block of data into its internal memory. When the oscilloscope has collected the whole block, it signals that it is ready and then transfers the whole block to the computer's memory through the USB port.

- Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The memory buffer is shared between the enabled channels, so if two channels are enabled, each receives half the memory. These features are handled transparently by the driver. The block size also depends on the number of memory segments in use (see ps5000aMemorySegments).
- Sampling rate. A PicoScope 5000 Series oscilloscope can sample at a number of different rates according to the selected <u>timebase</u> and the combination of channels that are enabled. See the <u>PicoScope 5000 Series User's Guide</u> for the specifications that apply to your scope model.
- Setup time. The driver normally performs a number of setup operations, which can take up to 50 milliseconds, before collecting each block of data. If you need to collect data with the minimum time interval between blocks, use <u>rapid block mode</u> and avoid calling setup functions between calls to <u>ps5000aRunBlock</u>, <u>ps5000aStop</u> and <u>ps5000aGetValues</u>.
- Downsampling. When the data has been collected, you can set an optional downsampling factor and examine the data. Downsampling is a process that reduces the amount of data by combining adjacent samples. It is useful for zooming in and out of the data without having to repeatedly transfer the entire contents of the scope's buffer to the PC.
- Segmented memory. The scope's internal memory can be divided into segments so that you can capture several waveforms in succession. Configure this using ps5000aMemorySegments.
- Data retention. The data is lost when a new run is started in the same segment, the settings are changed, or the scope is powered down or the power source is changed (for flexible power devices).

See <u>Using block mode</u> for programming details.

3.4.1.1 Using block mode

You can use **block mode** with or without <u>aggregation</u>. With aggregation, you need to set up two buffers for each channel to receive the minimum and maximum values: see **rapid block mode example 1** for an example of this.

Here is the general procedure for reading and displaying data in <u>block mode</u> using a single <u>memory segment</u>:

- 1. Open the oscilloscope using ps5000aOpenUnit.
- 2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.
- 3. Using <u>ps5000aGetTimebase</u>, select timebases until the required nanoseconds per sample is located.
- 4. Use the trigger setup functions <u>ps5000aSetTriggerChannelConditions</u>, <u>ps5000aSetTriggerChannelDirections</u> and <u>ps5000aSetTriggerChannelProperties</u> to set up the trigger if required.
- 5. Start the oscilloscope running using ps5000aRunBlock.
- 6. Wait until the oscilloscope is ready using the <u>ps5000aBlockReady</u> callback (or poll using <u>ps5000aIsReady</u>).
- 7. Use <u>ps5000aSetDataBuffer</u> to tell the driver where your memory buffer is. For greater efficiency when doing multiple captures, you can call this function outside the loop, after step 4.
- 8. Transfer the block of data from the oscilloscope using ps5000aGetValues.
- 9. Display the data.
- 10. Stop the oscilloscope using ps5000aStop.
- 11. Repeat steps 5 to 9.
- 12. Request new views of stored data using different downsampling parameters: see <u>Retrieving stored data</u>.
- 13. Close the device using ps5000aCloseUnit.

Note that if you use ps5000aGetValues or ps5000aStop before the oscilloscope is ready, no capture will be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

3.4.1.2 Asynchronous calls in block mode

The ps5000aGetValues function may take a long time to complete if a large amount of data is being collected. For example, it can take 14 seconds (or several minutes on USB 1.1) to retrieve the full 512 megasamples (in 8-bit mode) from a PicoScope 5444B using a USB 2.0 connection. To avoid hanging the calling thread, it is possible to call ps5000aGetValuesAsync instead. This immediately returns control to the calling thread, which then has the option of waiting for the data or calling ps5000aStop to abort the operation.

3.4.2 Rapid block mode

In normal <u>block mode</u>, the PicoScope 5000 Series scopes collect one waveform at a time. You start the the device running, wait until all samples are collected by the device, and then download the data to the PC or start another run. There is a time overhead of tens of milliseconds associated with starting a run, causing a gap between waveforms. When you collect data from the device, there is another minimum time overhead which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the minimum time between waveforms. It reduces the gap from milliseconds to less than 2 microseconds (on fastest timebase).

See <u>Using rapid block mode</u> for details.

3.4.2.1 Using rapid block mode

You can use **rapid block mode** with or without <u>aggregation</u>. With aggregation, you need to set up two buffers for each channel to receive the minimum and maximum values.

Without aggregation

- 1. Open the oscilloscope using ps5000aOpenUnit.
- 2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.
- Set the number of memory segments equal to or greater than the number of captures required using <u>ps5000aMemorySegments</u>. Use <u>ps5000aSetNoOfCaptures</u> before each run to specify the number of waveforms to capture.
- 4. Using <u>ps5000aGetTimebase</u>, select timebases until the required nanoseconds per sample is located. This will indicate the number of samples per channel available for each segment.
- 5. Use the trigger setup functions <u>ps5000aSetTriggerChannelConditions</u>, <u>ps5000aSetTriggerChannelDirections</u> and <u>ps5000aSetTriggerChannelProperties</u> to set up the trigger if required.
- 6. Start the oscilloscope running using <u>ps5000aRunBlock</u>. THEN EITHER
- 7a. To obtain data before rapid block capture has finished, call <u>ps5000aStop</u> and then <u>ps5000aGetNoOfCaptures</u> to find out how many captures were completed. OR
- 7b. Wait until the oscilloscope is ready using ps5000alsReady. OR
- 7c. Wait on the callback function.
- 8. Use <u>ps5000aSetDataBuffer</u> to tell the driver where your memory buffers are. Call the function once for each channel/<u>segment</u> combination for which you require data. For greater efficiency when doing multiple captures, you can call this function outside the loop, after step 5.
- Transfer the blocks of data from the oscilloscope using <u>ps5000aGetValuesBulk</u> (or <u>ps5000aGetValues</u> to retrieve one buffer at a time). These functions stop the oscilloscope.
- 10. Retrieve the time offset for each data segment using ps5000aGetValuesTriggerTimeOffsetBulk64.
- 11. Display the data.
- 12. Repeat steps 6 to 11 if necessary.
- 13. Call <u>ps5000aStop</u> (usually unnecessary as the scope stops automatically in most cases, but recommended as a precaution).
- 14. Close the device using ps5000aCloseUnit.

With aggregation

To use rapid block mode with aggregation, follow steps 1 to 7 above, then proceed as follows:

- 8a. Call <u>ps5000aSetDataBuffer</u> or (<u>ps5000aSetDataBuffers</u>) to set up one pair of buffers for every waveform segment required.
- 9a. Call ps5000aGetValuesBulk for each pair of buffers.
- 10a. Retrieve the time offset for each data segment using ps5000aGetValuesTriggerTimeOffsetBulk64.

Continue from step 11 above.

3.4.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

- Open the device
- Channels
- Trigger
- Number of memory segments (this should be equal or more than the no of captures required)

```
// set the number of waveforms to MAX_WAVEFORMS
ps5000aSetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;
ps5000aRunBlock
(
    handle,
    0, // noOfPreTriggerSamples
    10000, // noOfPostTriggerSamples
    1, // timebase to be used
    &timeIndisposedMs,
    0, // segment index
    lpReady,
    &pParameter
);
```

Comment: these variables have been set as an example and can be any valid value. pParameter will be set true by your callback function lpReady.

```
while (!pParameter) Sleep (0);
int16_t buffer[PS5000A_MAX_CHANNELS][MAX_WAVEFORMS][MAX_SAMPLES];
for (int32_t i = 0; i < 20; i++)
{
  for (int32_t c = PS5000A_CHANNEL_A; c <= PS5000A_CHANNEL_B; c++)</pre>
  {
     ps5000aSetDataBuffer
       handle,
       c,
       buffer[c][i],
       MAX_SAMPLES,
       i
       PS5000A_RATIO_MODE_NONE
     );
  }
}
```

Comments: buffer has been created as a three-dimensional 16-bit integer array, which will contain 1000 samples as defined by MAX_SAMPLES. There are only 20 buffers set, but it is possible to set up to the number of captures you have requested. <u>PS5000A_RATIO_MODE_NONE</u> can be substituted for <u>PS5000A_RATIO_MODE_AGGREGATE</u>, <u>PS5000A_RATIO_MODE_DECIMATE</u>, or <u>PS5000A_RATIO_MODE_AVERAGE</u>.

```
int16_t overflow[MAX_WAVEFORMS];
```

```
ps5000aGetValuesBulk
(
    handle,
    &noOfSamples, // set to MAX_SAMPLES on entering the function
    10, // fromSegmentIndex
    19, // toSegmentIndex
    1, // downsampling ratio
    PS5000A_RATIO_MODE_NONE, // downsampling ratio mode
    overflow // indices 10 to 19 will be populated
)
```

Comments: the number of samples could be up to noOfPreTriggerSamples + noOfPostTriggerSamples, the values set in <u>ps5000aRunBlock</u>. The samples are always returned from the first sample taken, unlike the <u>ps5000aGetValues</u> function which allows the sample index to be set. The above segments start at 10 and finish at 19 inclusive. It is possible for the fromSegmentIndex to wrap around to the toSegmentIndex, by setting the fromSegmentIndex to 98 and the toSegmentIndex to 7.

```
int64_t times[MAX_WAVEFORMS];
PS5000A_TIME_UNITS timeUnits[MAX_WAVEFORMS];
ps5000aGetValuesTriggerTimeOffsetBulk64
(
    handle,
    times, // indices 10 to 19 will be populated
    timeUnits, // indices 10 to 19 will be populated
    10, // fromSegmentIndex, inclusive
    19, // toSegmentIndex, inclusive
)
```

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for the fromSegmentIndex to wrap around to the toSegmentIndex, if the fromSegmentIndex is set to 98 and the toSegmentIndex to 7.

3.4.2.3 Rapid block mode example 2: using aggregation

```
#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000
```

Set up the device up as usual.

- Open the device
- Channels
- Trigger
- Number of memory segments (this should be equal or more than the number of captures required)

```
// set the number of waveforms to MAX_WAVEFORMS
ps5000aSetNoOfCaptures (handle, MAX_WAVEFORMS);

pParameter = false;
ps5000aRunBlock
(
    handle,
    0, // noOfPreTriggerSamples,
    1000000, // noOfPostTriggerSamples,
    1, // timebase to be used,
    &timeIndisposedMs,
    lpReady,
    &pParameter
);
```

Comments: the set-up for running the device is exactly the same whether or not you use <u>aggregation</u> when you retrieve the samples.

```
for (int32_t segment = 10; segment < 20; segment++)
{
  for (int32_t c = PS5000A_CHANNEL_A; c <= PS5000A_CHANNEL_D; c++)
  {
    ps5000aSetDataBuffers
    (
        handle,
        c,
        bufferMax[c],
        bufferMin[c]
        MAX_SAMPLES
        1,
        PS5000A_RATIO_MODE_AGGREGATE
    );
  }
</pre>
```

```
ps5000aGetValues
  (
    handle,
    0.
    &noOfSamples, // set to MAX_SAMPLES on entering
    1000,
    downSampleRatioMode, // set to RATIO MODE AGGREGATE
    index,
    overflow
  );
  ps5000aGetTriggerTimeOffset64
    handle,
    &time,
    &timeUnits,
    index
  )
}
```

Comments: each waveform is retrieved one at a time from the driver, with an aggregation of 1000. Since only one waveform will be retrieved at a time, you only need to set up one pair of buffers; one for the maximum samples and one for the minimum samples. Again, the buffer sizes are 1000 samples.

3.4.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing repetitive signals. It is a modified form of <u>block mode</u>, and is controlled by the ps5000a set of trigger functions and the <u>ps5000aSetEts</u> function.

- Overview. ETS works by capturing several cycles of a repetitive waveform, then combining them to produce a composite waveform that has a higher effective sampling rate than the individual captures. The scope hardware accurately measures the delay, which is a small fraction of a single sampling interval, between each trigger event and the subsequent sample. The driver then shifts each capture slightly in time and overlays them so that the trigger points are exactly lined up. The result is a larger set of samples spaced by a small fraction of the original sampling interval. The maximum effective sampling rates that can be achieved with this method are listed in the User's Guide for the scope device.
- Trigger stability. Because of the high sensitivity of ETS mode to small time differences, the trigger must be set up to provide a stable waveform that varies as little as possible from one capture to the next.
- Callback. ETS mode calls the ps5000aBlockReady callback function when a new waveform is ready for collection. The ps5000aGetValues function needs to be called for the waveform to be retrieved.

Applicability	Available in <u>block mode</u> only.			
	Not suitable for one-shot (non-repetitive) signals.			
	Aggregation is not supported.			
	Edge-triggering only.			
	Auto trigger delay (autoTriggerMilliseconds) is ignored.			

3.4.3.1 Using ETS mode

This is the general procedure for reading and displaying data in <u>ETS mode</u> using a single <u>memory segment</u>:

- 1. Open the oscilloscope using ps5000aOpenUnit.
- 2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.
- 3. Use ps5000aGetTimebase to verify the number of samples to be collected.
- 4. Set up ETS using ps5000aSetEts.
- 5. Use the trigger setup functions <u>ps5000aSetTriggerChannelDirections</u> and <u>ps5000aSetTriggerChannelProperties</u> to set up the trigger if required.
- 6. Start the oscilloscope running using <u>ps5000aRunBlock</u>.
- 7. Wait until the oscilloscope is ready using the <u>ps5000aBlockReady</u> callback (or poll using <u>ps5000aIsReady</u>).
- 8. Use <u>ps5000aSetDataBuffer</u> to tell the driver where to store sampled data.
- 8a. Use <u>ps5000aSetEtsTimeBuffer</u> or <u>ps5000aSetEtsTimeBuffers</u> to tell the driver where to store sample times.
- 9. Transfer the block of data from the oscilloscope using ps5000aGetValues.
- 10. Display the data.
- 11. While you want to collect updated captures, repeat steps 7 to 10.
- 12. Stop the oscilloscope using ps5000aStop.
- 13. Repeat steps 6 to 12.
- 14. Close the device using ps5000aCloseUnit.

A	plication			
	(ps5000aOpenUnit			
	(ps5000aSetChannel	Set up device		
	ps5000aSetEts			Start collection
	ps5000aSetTrigger functions		*****	Data ready
	ps5000aRunBlock			Data received
$\left(\right)$	App: ps5000aBlockReady			
	(ps5000aSetDataBuffer	/		
	(ps5000aSetEtsTimeBuffer(s)	Data processed		
\langle	ps5000aGetValues			Driver

3.4.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when using <u>block mode</u>. Streaming mode supports downsampling and triggering, while providing fast streaming at up to 31.25 MS/s (32 ns per sample) when one channel is active, depending on the computer's performance. This makes it suitable for **high-speed data acquisition**, allowing you to capture long data sets limited only by the computer's memory.

- Aggregation. The driver returns <u>aggregated readings</u> while the device is streaming. If aggregation is set to 1 then only one buffer is used per channel. When aggregation is set above 1 then two buffers (maximum and minimum) per channel are used.
- Memory segmentation. The memory can be divided into <u>segments</u> to reduce the latency of data transfers to the PC. However, this increases the risk of losing data if the PC cannot keep up with the device's sampling rate.

See <u>Using streaming mode</u> for programming details.

3.4.4.1 Using streaming mode

This is the general procedure for reading and displaying data in <u>streaming mode</u> using a single <u>memory segment</u>:

- 1. Open the oscilloscope using ps5000aOpenUnit.
- 2. Select channels, ranges and AC/DC coupling using ps5000aSetChannel.
- 3. Use the trigger setup functions <u>ps5000aSetTriggerChannelDirections</u> and <u>ps5000aSetTriggerChannelProperties</u> to set up the trigger if required.
- 4. Call <u>ps5000aSetDataBuffer</u> to tell the driver where your data buffer is.
- 5. Set up aggregation and start the oscilloscope running using <u>ps5000aRunStreaming</u>.
- 6. Call <u>ps5000aGetStreamingLatestValues</u> to get data.
- 7. Process data returned to your application's function. This example is using Auto Stop, so after the driver has received all the data points requested by the application, it stops the device streaming.
- 8. Call <u>ps5000aStop</u>, even if Auto Stop is enabled.
- 9. Request new views of stored data using different downsampling parameters: see <u>Retrieving stored data</u>.
- 10. Close the device using <u>ps5000aCloseUnit</u>.

3.4.5 Retrieving stored data

You can collect data from the ps5000a driver with a different <u>downsampling</u> factor when <u>ps5000aRunBlock</u> or <u>ps5000aRunStreaming</u> has already been called and has successfully captured all the data. Use <u>ps5000aGetValuesAsync</u>.

3.5 Timebases

The API allows you to select any of 2³² different timebases based on the maximum sampling rate* of your oscilloscope. The timebases allow slow enough sampling in block mode to overlap the streaming sample intervals, so that you can make a smooth transition between block mode and streaming mode. Calculate the timebase using the <u>ps5000aGetTimebase</u> call. Accepted timebases for each resolution mode are:

8-bit resolution

Timebase	Sample interval formula	Sample interval examples	Notes
0		1 ns	Only one channel enabled
1	2 ^{timebase} / 1,000,000,000	2 ns	
2		4 ns	
3 to 2 ³² –1	(timebase–2) / 125,000,000	3 => 8 ns 2 ³² -1 => ~ 34.36 s	

12-bit resolution

Timebase**	Sample interval formula	Sample interval examples	Notes
1	2 ^(timebase-1) / 500,000,000	2 ns	Only one channel enabled
2		4 ns	
3		8 ns	
4 to 2 ³² –2	(timebase–3) / 62,500,000	4 => 16 ns $2^{32}-2 => \sim 68.72 \text{ s}$	

14, 15-bit resolutions

Timebase†	Sample interval formula	Sample interval examples	Notes
3 to 2 ³² –1	(timebase–2) / 125,000,000	3 => 8 ns 4 => 16 ns 5 => 24 ns $2^{32}-1 => \sim 34.36 \text{ s}$	Only one channel enabled

16-bit resolution

Timebas	e [‡] Sample interval formu	la Sample interval examples	Notes
4 to 2 ³² –2	(timebase–3) / 62,500,000	4 => 16 ns 5 => 32 ns 6 => 48 ns $2^{32}-2 => \sim 68.72 \text{ s}$	Only one channel enabled

* The fastest available sampling rate may depend on which channels are enabled and on the sampling mode. Please refer to the oscilloscope data sheet for sampling rate specifications. In streaming mode, the speed of the USB port may affect the rate of data transfer.

- ** Timebase 0 is not available in 12-bit resolution mode.
- **†** Timebases 0, 1 and 2 are not available in 14 and 15-bit resolution modes.
- Timebases 0, 1, 2 and 3 are not available in 16-bit resolution mode.

ETS mode

In ETS mode the sample time is not set according to the above tables, but is instead calculated and returned by ps5000aSetEts.

3.6 Power options

The 4-channel 5000 Series oscilloscopes allow you to choose from two different methods of powering your device. Our flexible power feature offers the choice of powering your device using a single-headed USB cable and provided power supply unit, or using our double-headed USB cable to draw power from two powered USB ports for use in 2-channel mode. If the power source is changed (i.e. AC adaptor being connected or disconnected) while the oscilloscope is in operation, the oscilloscope will restart automatically and any unsaved data will be lost.

For further information on these options, refer to the documentation included with your device.

Power options functions

The following functions support the flexible power feature:

ps5000aChangePowerSource

ps5000aCurrentPowerSource

If you want the device to run on USB power only, instruct the driver by calling <u>ps5000aChangePowerSource</u> after calling <u>ps5000aOpenUnit</u>. If <u>ps5000aOpenUnit</u> is called without the power supply connected, the driver returns PICO_POWER_SUPPLY_NOT_CONNECTED. If the supply is connected or disconnected during use, the driver will return the relevant status code and you must then call <u>ps5000aChangePowerSource</u> to continue running the scope.

ps5000apg.en r3

3.7 Combining several oscilloscopes

It is possible to collect data using up to 64 PicoScope 5000 Series oscilloscopes at the same time, depending on the capabilities of the PC. Each oscilloscope must be connected to a separate USB port. The <u>ps5000aOpenUnit</u> function returns a handle to an oscilloscope. All the other functions require this handle for oscilloscope identification. For example, to collect data from two oscilloscopes at the same time:

```
CALLBACK ps5000aBlockReady(...)
// define callback function specific to application
handle1 = ps5000aOpenUnit()
handle2 = ps5000aOpenUnit()
ps5000aSetChannel(handle1)
// set up unit 1
ps5000aRunBlock(handle1)
ps5000aSetChannel(handle2)
// set up unit 2
ps5000aRunBlock(handle2)
// data will be stored in buffers
// and application will be notified using callback
ready = FALSE
while not ready
   ready = handle1_ready
   ready &= handle2_ready
```

4 API functions

The ps5000a API exports the following functions for you to use in your own applications. All functions are C functions using the standard call naming convention (__stdcall). They are all exported with both decorated and undecorated names.

ps5000aBlockReady ps5000aChangePowerSource ps5000aCloseUnit ps5000aCurrentPowerSource ps5000aDataReady ps5000aEnumerateUnits ps5000aFlashLed ps5000aGetAnalogueOffset ps5000aGetChannelInformation ps5000aGetDeviceResolution ps5000aGetMaxDownSampleRatio ps5000aGetMaxSegments ps5000aGetNoOfCaptures ps5000aGetNoOfProcessedCaptures ps5000aGetStreamingLatestValues ps5000aGetTimebase ps5000aGetTimebase2 ps5000aGetTriggerTimeOffset ps5000aGetTriggerTimeOffset64 ps5000aGetUnitInfo ps5000aGetValues ps5000aGetValuesAsvnc ps5000aGetValuesBulk ps5000aGetValuesOverlapped ps5000aGetValuesOverlappedBulk ps5000aGetValuesTriggerTimeOffsetBulk ps5000aGetValuesTriggerTimeOffsetBulk64 ps5000alsReady ps5000alsTriggerOrPulseWidthQualifierEnabled ps5000aMaximumValue ps5000aMemorySegments ps5000aMinimumValue ps5000aNoOfStreamingValues ps5000aOpenUnit ps5000aOpenUnitAsync ps5000aOpenUnitProgress ps5000aPingUnit ps5000aRunBlock ps5000aRunStreaming ps5000aSetBandwidthFilter ps5000aSetChannel ps5000aSetDataBuffer ps5000aSetDataBuffers ps5000aSetDeviceResolution ps5000aSetEts ps5000aSetEtsTimeBuffer ps5000aSetEtsTimeBuffers ps5000aSetNoOfCaptures ps5000aSetPulseWidthQualifier ps5000aSetSigGenArbitrary ps5000aSetSigGenBuiltIn ps5000aSetSigGenPropertiesArbitrary ps5000aSetSigGenPropertiesBuiltIn ps5000aSetSimpleTrigger ps5000aSetTriggerChannelConditions ps5000aSetTriggerChannelDirections ps5000aSetTriggerChannelProperties

indicate when block-mode data ready configures the unit's power source close a scope device indicate the current power state of the device indicate when post-collection data ready find all connected oscilloscopes flash the front-panel LED query the permitted analog offset range gueries which ranges are available on a device retrieves the resolution specified device will run query the aggregation ratio for data query the maximum number of segments find out how many captures are available query number of captures processed get streaming data while scope is running find out what timebases are available find out what timebases are available find out when trigger occurred (32-bit) find out when trigger occurred (64-bit) read information about scope device retrieve block-mode data with callback retrieve streaming data with callback retrieve data in rapid block mode set up data collection ahead of capture set up data collection in rapid block mode get rapid-block waveform timings (32-bit) get rapid-block waveform timings (64-bit) poll driver in block mode find out whether trigger is enabled query the max. ADC count in GetValues calls divide scope memory into segments query the min. ADC count in GetValues calls get number of samples in streaming mode open a scope device open a scope device without waiting check progress of OpenUnit call check communication with device start block mode start streaming mode specifies the bandwidth limit set up input channels register data buffer with driver register aggregated data buffers with driver sets the resolution a specified device will run set up equivalent-time sampling set up buffer for ETS timings (64-bit) set up buffer for ETS timings (32-bit) set number of captures to collect in one run set up pulse width triggering set up arbitrary waveform generator set up standard signal generator change AWG settings change function generator settings set up level triggers only specify which channels to trigger on set up signal polarities for triggering set up trigger thresholds

ps5000aSetTriggerDelay ps5000aSigGenArbitraryMinMaxValues ps5000aSigGenFrequencyToPhase ps5000aSigGenSoftwareControl ps5000aStop ps5000aStreamingReady set up post-trigger delay get AWG parameters convert frequency to phase count trigger the signal generator stop data capture indicate when streaming-mode data ready

4.1 ps5000aBlockReady (callback)

```
typedef void (CALLBACK *ps5000aBlockReady)
(
    int16_t handle,
    <u>PICO_STATUS</u> status,
    void * pParameter
)
```

This <u>callback</u> function is part of your application. You register it with the ps5000a driver using <u>ps5000aRunBlock</u> and the driver calls it back when block-mode data is ready. You can then download the data using the <u>ps5000aGetValues</u> function.

Applicability	Block mode only	
Arguments	handle, the handle of the device returning the samples.	
	status, indicates whether an error occurred during collection of the data.	
	* pParameter, a void pointer passed from ps5000aRunBlock. Your callback function can write to this location to send any data, such as a status flag, back to your application.	
Returns	nothing	

4.2 ps5000aChangePowerSource

PICO_STATUS ps5000aChangePowerSource
(
 int16_t handle,
 PICO_STATUS powerstate
)

This function selects the power supply mode. If USB power is required, you must explicitly allow it by calling this function. If the AC power adapter is connected or disconnected during use, you must also call this function. If you change power source to PICO_POWER_SUPPLY_NOT_CONNECTED and channels C/D are currently enabled, they will be switched off. If a trigger is set using channels C/D the trigger settings for those channels will also be removed.

Applicability	All modes. 4-Channel 5000 A and B Series oscilloscopes only	
Arguments	handle, the handle of the device.	
	powerstate, the required state of the unit. Either PICO_POWER_SUPPLY_CONNECTED or PICO_POWER_SUPPLY_NOT_CONNECTED.	
Returns	PICO_OK PICO_POWER_SUPPLY_REQUEST_INVALID PICO_INVALID_PARAMETER PICO_NOT_RESPONDING PICO_INVALID_HANDLE	

4.3 ps5000aCloseUnit

PICO_STATUS ps5000aCloseUnit
(
 int16_t handle
)

This function shuts down the PicoScope 5000 Series oscilloscope.

Applicability	All modes
Arguments handle, the handle, returned by ps5000aOpenUnit, of the	
	device to be closed.
Returns	PICO_OK
	PICO_HANDLE_INVALID
	PICO_USER_CALLBACK
	PICO_DRIVER_FUNCTION

4.4 ps5000aCurrentPowerSource

```
PICO_STATUS ps5000aCurrentPowerSource
(
    int16_t handle
)
```

This function returns the current power state of the device.

Applicability	All modes. 4-Channel 5000 A and B Series oscilloscopes only
Arguments	handle, the handle of the device
Returns	PICO_INVALID_HANDLE - handle of the device is not recognised. PICO_POWER_SUPPLY_CONNECTED - if the device is powered by the AC adapter. PICO_POWER_SUPPLY_NOT_CONNECTED - if the device is powered by the USB cable.

4.5 ps5000aDataReady (callback)

typedef void	(CALLBACK	(*ps5000aDataReady)
(
int16_t	handle	e,
PICO_STATUS	status	5,
uint32_t	noOfSa	amples,
int16_t	overf	Low,
void	* pParar	neter
)		

This is a <u>callback</u> function that you write to collect data from the driver. You supply a pointer to the function when you call <u>ps5000aGetValuesAsync</u>, and the driver calls your function back when the data is ready.

Applicability	All modes	
Arguments	handle, the handle of the device returning the samples.	
	status, a PICO_STATUS code returned by the driver.	
	noOfSamples, the number of samples collected.	
	overflow, a set of flags that indicates whether an overvoltage has occurred and on which channels. It is a bit field with bit 0 representing Channel A.	
	* pParameter, a void pointer passed from	
	ps5000aGetValuesAsync. The callback function can write to this	
	location to send any data, such as a status flag, back to the application. The data type is defined by the application programmer.	
Returns	nothing	

4.6 ps5000aEnumerateUnits

```
PICO_STATUS ps5000aEnumerateUnits
(
    int16_t * count,
    int8_t * serials,
    int16_t * serialLth
)
```

This function counts the number of PicoScope 5000 Series units connected to the computer, and returns a list of serial numbers as a string. Note that this function will only detect devices that are not yet being controlled by an application.

Applicability	All modes
Arguments	* count, on exit, the number of PicoScope 5000 Series units found
	* serials, on exit, a list of serial numbers separated by commas and terminated by a final null. Example:
	AQ005/139, VDR61/356, ZOR14/107. Can be NULL on entry if serial numbers are not required.
	* serialLth, on entry, the length of the int8_t buffer pointed to by serials; on exit, the length of the string written to serials
Returns	PICO_OK PICO_BUSY
	PICO_NULL_PARAMETER PICO_FW_FAIL PICO_CONFIG_FAIL
	PICO_MEMORY_FAIL PICO CONFIG FAIL AWG
	PICO_INITIALISE_FPGA

4.7 ps5000aFlashLed

```
PICO_STATUS ps5000aFlashLed
(
    int16_t handle,
    int16_t start
)
```

This function flashes the LED on the front of the scope without blocking the calling thread. Calls to <u>ps5000aRunStreaming</u> and <u>ps5000aRunBlock</u> cancel any flashing started by this function. It is not possible to set the LED to be constantly illuminated, as this state is used to indicate that the scope has not been initialized.

Applicability	All modes	
Arguments	handle, the handle of the scope device	
	start, the action required:	
	< 0 : flash the LED indefinitely.	
	0 : stop the LED flashing.	
	> 0 : flash the LED start times. If the LED is already flashing	
	on entry to this function, the flash count will be reset to start.	
Returns	PICO_OK	
	PICO_HANDLE_INVALID	
	PICO_BUSY	
	PICO_DRIVER_FUNCTION	
	PICO_NOT_RESPONDING	
4.8 ps5000aGetAnalogueOffset

PICO_STATUS ps5000aGetAnalogueOffset
(
 int16_t handle,
 PS5000A_RANGE range,
 PS5000A_COUPLING coupling,
 float * maximumVoltage,
 float * minimumVoltage)

This function is used to get the maximum and minimum allowable analog offset for a specific voltage range.

Applicability	Al models			
Arguments	handle, the value returned from opening the device.			
	range, the voltage range to be used when gathering the min and max information.			
	<pre>coupling, the type of AC/DC coupling used. * maximumVoltage, a pointer to a float, an out parameter set to the maximum voltage allowed for the range, may be NULL. * minimumVoltage, a pointer to a float, an out parameter set to the minimum voltage allowed for the range, may be NULL.</pre>			
	If both maximumVoltage and minimumVoltage are set to NULL,			
	the driver will return PICO_NULL_PARAMETER.			
Returns	PICO_OK PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION			
	PICO_INVALID_VOLTAGE_RANGE PICO_NULL_PARAMETER			

4.9 ps5000aGetChannelInformation

```
PICO_STATUS ps5000aGetChannelInformation
(
                                handle,
  int16_t
  PS5000A_CHANNEL_INFO
                                info,
  int32_t
                                probe,
  int32_t
                              *
                               ranges,
  int32_t
                              * length,
  int32_t
                                channels
)
```

This function queries which ranges are available on a scope device.

Applicability	All modes			
Arguments	handle, the handle of the required device.			
	info, the type of information required. The following value is currently supported: <u>PS5000A_CI_RANGES</u>			
	probe, not used, must be set to 0.			
	* ranges, an array that will be populated with available <u>PS5000A_RANGE</u> values for the given info. If NULL, length is set to the number of ranges available.			
	* length, on input: the length of the ranges array; on output: the number of elements written to the ranges array.			
	channels, the channel for which the information is required.			
Returns	PICO_OK PICO_HANDLE_INVALID PICO_BUSY PICO_DRIVER_FUNCTION PICO_NOT_RESPONDING PICO_NULL_PARAMETER			
	PICO_INVALID_CHANNEL PICO_INVALID_INFO			

4.10 ps5000aGetDeviceResolution

This function retrieves the resolution the specified device will run in.

Applicability	All modes			
Arguments	handle, the handle of the required device			
	* resolution, returns the resolution of the device, values are one of the <u>PS5000A_DEVICE_RESOLUTION</u> .			
Returns	PICO_OK PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION PICO_NULL_PARAMETER			

4.11 ps5000aGetMaxDownSampleRatio

This function returns the maximum downsampling ratio that can be used for a given number of samples in a given downsampling mode.

Applicability	All modes			
Arguments	handle, the handle of the required device			
	noOfUnaggregatedSamples, the number of unprocessed samples to be downsampled			
	<pre>* maxDownSampleRatio: the maximum possible downsampling ratio output</pre>			
	downSampleRatioMode: the downsampling mode. See <pre>ps5000aGetValues</pre>			
	segmentIndex, the <u>memory segment</u> where the data is stored			
Returns	PICO_OK PICO_INVALID_HANDLE PICO_NO_SAMPLES_AVAILABLE PICO_NULL_PARAMETER PICO_INVALID_PARAMETER PICO_SEGMENT_OUT_OF_RANGE PICO_TOO_MANY_SAMPLES			

4.12 ps5000aGetMaxSegments

```
PICO_STATUS ps5000aGetMaxSegments
(
    int16_t handle,
    uint32_t * maxsegments
)
```

This function returns the maximum number of segments allowed for the opened device. Refer to <u>ps5000aMemorySegments</u> for specific figures.

Applicability	All modes			
Arguments	handle, the value returned from opening the device.			
	* maxsegments, (output) the maximum number of segments allowed.			
Returns	PICO_OK PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION PICO_NULL_PARAMETER			

4.13 ps5000aGetNoOfCaptures

```
PICO_STATUS ps5000aGetNoOfCaptures
(
    int16_t handle,
    uint32_t * nCaptures
)
```

This function returns the number of captures the device has made in rapid block mode, since you called <u>ps5000aRunBlock</u>. You can call ps5000aGetNoOfCaptures during device capture, after collection has completed or after interrupting waveform collection by calling <u>ps5000aStop</u>. The returned value (nCaptures) can then be used to iterate through the number of segments using <u>ps5000aGetValues</u>, or in a single call to <u>ps5000aGetValuesBulk</u>, where it is used to calculate the toSegmentIndex parameter.

Applicability	Rapid block mode			
Arguments	handle, handle of the required device.			
	* nCaptures, output: the number of available captures that has been collected from calling ps5000aRunBlock.			
Returns	PICO_OK PICO_DRIVER_FUNCTION PICO_INVALID_HANDLE PICO_NOT_RESPONDING PICO_NO_SAMPLES_AVAILABLE PICO_NULL_PARAMETER PICO_INVALID_PARAMETER PICO_SEGMENT_OUT_OF_RANGE PICO_TOO_MANY_SAMPLES			

4.14 ps5000aGetNoOfProcessedCaptures

```
PICO_STATUS ps5000aGetNoOfProcessedCaptures
(
    int16_t handle,
    uint32_t * nProcessedCaptures
)
```

This function gets the number of captures collected and processed in one run of <u>rapid</u> <u>block mode</u>. It enables your application to start processing captured data while the driver is still transferring later captures from the device to the computer.

The function returns the number of captures the driver has processed since you called <u>ps5000aRunBlock</u>. It is for use in rapid block mode, alongside the <u>ps5000aGetValuesOverlappedBulk</u> function, when the driver is set to transfer data from the device automatically as soon as the <u>ps5000aRunBlock</u> function is called. You can call ps5000aGetNoOfProcessedCaptures during device capture, after collection has completed or after interrupting waveform collection by calling <u>ps5000aStop</u>.

The returned value (nProcessedCaptures) can then be used to iterate through the number of segments using <u>ps5000aGetValues</u>, or in a single call to <u>ps5000aGetValuesBulk</u>, where it is used to calculate the toSegmentIndex parameter.

When capture is stopped

If nProcessedCaptures = 0, you will also need to call <u>ps5000aGetNoOfCaptures</u>, in order to determine how many waveform segments were captured, before calling <u>ps5000aGetValues</u> or <u>ps5000aGetValuesBulk</u>.

Applicability	Rapid block mode, using ps5000aGetValuesOverlapped.				
Arguments	handle: handle of the required device.				
	* nProcessedCaptures, output: the number of available				
	captures that has been collected from calling ps5000aRunBlock.				
Returns	PICO_OK				
	PICO_DRIVER_FUNCTION				
	PICO_INVALID_HANDLE				
	PICO_NO_SAMPLES_AVAILABLE				
	PICO_NULL_PARAMETER				
	PICO_INVALID_PARAMETER				
	PICO_SEGMENT_OUT_OF_RANGE				
	PICO_TOO_MANY_SAMPLES				

4.15 ps5000aGetStreamingLatestValues

This function instructs the driver to return the next block of values to your <u>ps5000aStreamingReady</u> callback function. You must have previously called <u>ps5000aRunStreaming</u> beforehand to set up <u>streaming</u>.

Applicability	Streaming mode only		
Arguments	handle, the handle of the required device.		
	lpPs5000AReady, a pointer to your <u>ps5000aStreamingReady</u> callback function.		
	* pParameter, a void pointer that will be passed to the		
	ps5000aStreamingReady callback function. The callback function		
	may optionally use this pointer to return information to the		
	application.		
Returns	PICO_OK		
	PICO_POWER_SUPPLY_CONNECTED		
	PICO_POWER_SUPPLY_NOT_CONNECTED		
	PICO_INVALID_HANDLE		
	PICO_NO_SAMPLES_AVAILABLE		
	PICO_INVALID_CALL		
	PICO_BUSY		
	PICO_NOT_RESPONDING		
	PICO_DRIVER_FUNCTION		

4.16 ps5000aGetTimebase

PICO_STATU	<u>s</u> 1	ps5000aGetTimebase
<pre>(int16_t uint32_t int32_t int32_t int32_t int32_t uint32_t </pre>	*	<pre>handle, timebase, noSamples, timeIntervalNanoseconds, maxSamples, segmentIndex</pre>
/		

This function calculates the sampling rate and maximum number of samples for a given <u>timebase</u> under the specified conditions. The result will depend on the number of channels enabled by the last call to <u>ps5000aSetChannel</u>.

This function is provided for use with programming languages that do not support the float data type. The value returned in the timeIntervalNanoseconds argument is restricted to integers. If your programming language supports the float type, then we recommend that you use ps5000aGetTimebase2 instead.

To use <u>ps5000aGetTimebase</u> or <u>ps5000aGetTimebase2</u>, first estimate the timebase number that you require using the information in the <u>timebase guide</u>. Next, call one of these functions with the timebase that you have just chosen and verify that the timeIntervalNanoseconds argument that the function returns is the value that you require. You may need to iterate this process until you obtain the time interval that you need.

Applicability	All modes					
Arguments	handle, the handle of the required device.					
	timebase, <u>see timebase guide</u>					
	noSamples, the number of samples required.					
	* timeIntervalNanoseconds, on exit, the time interval between readings at the selected timebase. Use NULL if not required.					
	* maxSamples, on exit, the maximum number of samples available. The scope reserves some memory for internal overheads and this may vary depending on the number of segments, number of channels enabled, and the timebase chosen. Use NULL if not required.					
	segmentIndex, the index of the memory segment to use.					
Returns	PICO_OK PICO_INVALID_HANDLE PICO_TOO_MANY_SAMPLES PICO_INVALID_CHANNEL PICO_INVALID_TIMEBASE PICO_INVALID_PARAMETER PICO_SECMENT_OUT_OF_DANCE					
	PICO_DRIVER_FUNCTION					

4.17 ps5000aGetTimebase2

PI	CO_STATUS	ŗ	s5000aGetTimebase2
(int16_t uint32_t int32_t float int32_t	* *	handle, timebase, noSamples, timeIntervalNanoseconds, maxSamples,
)	uIIIL3Z_L		segmentindex

This function is an upgraded version of ps5000aGetTimebase, and returns the time interval as a float rather than an int32_t. This allows it to return sub-nanosecond time intervals. See ps5000aGetTimebase for a full description.

Applicability	All modes
Arguments	 timeIntervalNanoseconds, a pointer to the time interval between readings at the selected timebase. If a null pointer is passed, nothing will be written here. All other arguments: see ps5000aGetTimebase.
Returns	See <u>ps5000aGetTimebase</u> .

4.18 ps5000aGetTriggerTimeOffset

This function gets the trigger time offset for waveforms obtained in <u>block mode</u> or <u>rapid block mode</u>. The trigger time offset is an adjustment value used for correcting jitter in the waveform, and is intended mainly for applications that wish to display the waveform with reduced jitter. The offset is zero if the waveform crosses the threshold at the trigger sampling instant, or a positive or negative value if jitter correction is required. The value should be added to the nominal trigger time to get the corrected trigger time.

Call this function after data has been captured or when data has been retrieved from a previous capture.

This function is provided for use in programming environments that do not support 64bit integers. Another version of this function, <u>ps5000aGetTriggerTimeOffset64</u>, is available that returns the time as a single 64-bit value.

Applicability	Block mode, rapid block mode	
Arguments	handle, the handle of the required device	
	* timeUpper, on exit, the upper 32 bits of the time at which the trigger point occurred	
	* timeLower, on exit, the lower 32 bits of the time at which the trigger point occurred	
	<pre>* timeUnits, returns the time units in which timeUpper and timeLower are measured. The allowable values are: <u>PS5000A_FS</u> <u>PS5000A_PS</u> <u>PS5000A_NS</u> <u>PS5000A_US</u> <u>PS5000A_MS</u> <u>PS5000A_S</u></pre>	
	segmentIndex, the number of the <u>memory segment</u> for which the information is required.	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_DEVICE_SAMPLING PICO_SEGMENT_OUT_OF_RANGE PICO_NOT_USED_IN_THIS_CAPTURE_MODE PICO_NOT_RESPONDING PICO_NULL_PARAMETER PICO_NO_SAMPLES_AVAILABLE PICO_DEVICE TUNCTION	

4.19 ps5000aGetTriggerTimeOffset64

This function gets the trigger time offset for a waveform. It is equivalent to ps5000aGetTriggerTimeOffset except that the time offset is returned as a single 64-bit value instead of two 32-bit values.

Applicability	Block mode, rapid block mode	
Arguments	handle, the handle of the required device	
	* time, on exit, the time at which the trigger point occurred	
	* timeUnits, on exit, the time units in which time is measured.	
	The possible values are: <u>PS5000A_FS</u> <u>PS5000A_PS</u> <u>PS5000A_US</u> <u>PS5000A_MS</u> <u>PS5000A_S</u> <u>PS5000A_S</u> <u>PS5000A_S</u>	
	information is required	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_DEVICE_SAMPLING PICO_SEGMENT_OUT_OF_RANGE PICO_NOT_USED_IN_THIS_CAPTURE_MODE PICO_NOT_RESPONDING PICO_NULL_PARAMETER PICO_NO_SAMPLES_AVAILABLE PICO_DELVER_FUNCTION	

4.20 ps5000aGetUnitInfo

```
PICO_STATUS ps5000aGetUnitInfo
(
    int16_t handle,
    int8_t * string,
    int16_t stringLength,
    int16_t * requiredSize,
    PICO_INFO info
)
```

This function retrieves information about the specified oscilloscope. If the device fails to open, or no device is opened only the driver version is available.

Applicability	All modes
Arguments	handle, the handle of the device from which information is required. If an invalid handle is passed, only the driver versions can be read.
	* string, on exit, the unit information string selected specified by the info argument. If string is NULL, only requiredSize is returned.
	stringLength, the maximum number of 8-bit integers (int8_t) that may be written to string.
	 requiredSize, on exit, the required length of the string array.
	info, a number specifying what information is required. The possible values are listed in the table below.
Returns	PICO_OK PICO_INVALID_HANDLE PICO_NULL_PARAMETER PICO_INVALID_INFO PICO_INFO_UNAVAILABLE PICO_DRIVER_FUNCTION

info		Example
0	PICO DRIVER VERSION	1,0,0,1
	Version number of ps5000a.dll	
1	PICO_USB_VERSION	2.0
	Type of USB connection to device: 1.1, 2.0 or 3.0	
2	PICO_HARDWARE_VERSION	1
	Hardware version of device	
3	PICO_VARIANT_INFO	5444B
	Variant number of device	
4	PICO_BATCH_AND_SERIAL	KJL87/6
	Batch and serial number of device	
5	PICO_CAL_DATE	30Sep09
	Calibration date of device	
6	PICO_KERNEL_VERSION	1.0
	Version of kernel driver	
7	PICO_DIGITAL_HARDWARE_VERSION	1
	Hardware version of the digital section	
8	PICO_ANALOGUE_HARDWARE_VERSION	1
	Hardware version of the analog section	

4.21 ps5000aGetValues

```
PICO_STATUS ps5000aGetValues
(
                          handle,
  int16_t
  uint32_t
                          startIndex,
  uint32_t
                        * noOfSamples,
  uint32_t
                          downSampleRatio,
  PS5000A_RATIO_MODE
                          downSampleRatioMode,
                          segmentIndex,
  uint32 t
                        * overflow
  int16_t
)
```

This function returns block-mode data from the oscilloscope's buffer memory, with or without <u>downsampling</u>, starting at the specified sample number. It is used to get the stored data after data collection has stopped.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

Applicability	Block mode, rapid block mode	
Arguments	handle, the handle of the required device.	
	startIndex, a zero-based index that indicates the start point for data collection. It is measured in sample intervals from the start of the buffer.	
	* noOfSamples, on entry, the number of samples required. On exit, the actual number retrieved. The number of samples retrieved will not be more than the number requested, and the data retrieved starts at startIndex.	
	downSampleRatio, the <u>downsampling</u> factor that will be applied to the raw data.	
	<pre>downSampleRatioMode, which <u>downsampling mode</u> to use. The available values are: PS5000A_RATIO_MODE_NONE (downSampleRatio is ignored) PS5000A_RATIO_MODE_AGGREGATE PS5000A_RATIO_MODE_AVERAGE PS5000A_RATIO_MODE_DECIMATE</pre>	
	AGGREGATE, AVERAGE, DECIMATE are single-bit constants that can be ORed to apply multiple downsampling modes to the same data.	
	segmentIndex, the zero-based number of the <u>memory segment</u> where the data is stored.	
	* overflow, on exit, a set of flags that indicate whether an overvoltage has occurred on any of the channels. It is a bit field with bit 0 denoting Channel A.	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED PICO_NO_SAMPLES_AVAILABLE	

4.21.1 Downsampling modes

Various methods of data reduction, or **downsampling**, are possible with the PicoScope 5000 Series oscilloscopes. The downsampling is done at high speed by dedicated hardware inside the scope, making your application faster and more responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions such as ps5000aGetValues. The following modes are available:

PS5000A_RATIO_MODE_NONE	No downsampling. Returns raw data values.
PS5000A_RATIO_MODE_AGGREGATE	Reduces every block of <i>n</i> values to just two values: a minimum and a maximum. The minimum and maximum values are returned in two separate buffers.
PS5000A_RATIO_MODE_AVERAGE	Reduces every block of <i>n</i> values to a single value representing the average (arithmetic mean) of all the values.
PS5000A_RATIO_MODE_DECIMATE	Reduces every block of <i>n</i> values to just the first value in the block, discarding all the other values.

4.22 ps5000aGetValuesAsync

PICO_STATUS ps5000aGetValuesAsync (handle, int16_t uint32_t startIndex, uint32_t noOfSamples, uint32_t downSampleRatio, PS5000A_RATIO_MODE downSampleRatioMode, segmentIndex, uint32 t * lpDataReady, void void * pParameter)

This function returns data either with or without <u>downsampling</u>, starting at the specified sample number. It is used to get the stored data from the driver after data collection has stopped. It returns the data using a <u>callback</u>.

Applicability	Streaming mode and block mode
Arguments	handle, the handle of the required device
	startIndex.
	noOfSamples
	downSampleRatio.
	downSampleRatioMode,
	segmentIndex: see ps5000aGetValues
	* lpDataReady, a pointer to the user-supplied function that will
	be called when the data is ready. This will be a ps5000abatakeady
	function for streaming mode data of a <u>ps5000aStreamingReady</u>
	lunction for streaming-mode data.
	* pParameter a void pointer that will be passed to the callback
	function. The data type is determined by the application.
Returns	PICO OK
	PICO_POWER_SUPPLY_CONNECTED
	PICO_POWER_SUPPLY_NOT_CONNECTED
	PICO_INVALID_HANDLE
	PICO_NO_SAMPLES_AVAILABLE
	PICO_DEVICE_SAMPLING
	PICO_NULL_PARAMETER
	PICO_STARTINDEX_INVALID
	PICO_SEGMENT_OUT_OF_RANGE
	PICO_INVALID_PARAMETER
	PICO_DATA_NOT_AVAILABLE
	PICO_INVALID_SAMPLERATIO
	PICO_INVALID_CALL
	LICO DELARE LONCIION

4.23 ps5000aGetValuesBulk

<u>PICO_STATUS</u> ps5000aGetV	/alı	lesBulk
<pre>int16_t uint32_t uint32_t uint32_t uint32_t PS5000A_RATIO_MODE int16_t</pre>	*	<pre>handle, noOfSamples, fromSegmentIndex, toSegmentIndex, downSampleRatio, downSampleRatioMode, overflow</pre>
/		

This function retrieves waveforms captured using <u>rapid block mode</u>. The waveforms must have been collected sequentially and in the same run.

Applicability	Rapid block mode	
Arguments	handle, the handle of the device	
	* noOfSamples, on entry, the number of samples required; on exit, the actual number retrieved. The number of samples retrieved will not be more than the number requested. The data retrieved always starts with the first sample captured.	
	<pre>fromSegmentIndex, the first segment from which the waveform should be retrieved</pre>	
	toSegmentIndex, the last segment from which the waveform should be retrieved	
	downSampleRatio, downSampleRatioMode: see <u>ps5000aGetValues</u>	
	* overflow, an array of integers equal to or larger than the number of waveforms to be retrieved. Each segment index has a corresponding entry in the overflow array, with overflow[0] containing the flags for the segment numbered fromSegmentIndex and the last element in the array containing the flags for the segment numbered toSegmentIndex. Each element in the array is a bit field as described under ps5000aGetValues.	
Returns	PICO_OK PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED PICO_INVALID_HANDLE PICO_INVALID_PARAMETER PICO_INVALID_SAMPLERATIO PICO_ETS_NOT_RUNNING PICO_BUFFERS_NOT_SET PICO_BUFFERS_NOT_SET PICO_TOO_MANY_SAMPLES PICO_SEGMENT_OUT_OF_RANGE PICO_NO_SAMPLES_AVAILABLE PICO_NOT_RESPONDING	
	PICO_DRIVER_FUNCTION	

4.24 ps5000aGetValuesOverlapped

PICO_STATUS ps5000aGetValuesOverlapped int16_t handle, uint32_t startIndex, uint32_t * noOfSamples, uint32_t downSampleRatio, PS5000A_RATIO_MODE downSampleRatioMode, segmentIndex, uint32 t * overflow int16 t)

This function allows you to make a deferred data-collection request in block mode. The request will be executed, and the arguments validated, when you call <u>ps5000aRunBlock</u>. The advantage of this function is that the driver makes contact with the scope only once, when you call <u>ps5000aRunBlock</u>, compared with the two contacts that occur when you use the conventional <u>ps5000aRunBlock</u>, <u>ps5000aGetValues</u> calling sequence. This slightly reduces the dead time between successive captures in block mode.

After calling <u>ps5000aRunBlock</u>, you can optionally use <u>ps5000aGetValues</u> to request further copies of the data. This might be required if you wish to display the data with different data reduction settings.

Applicability	Block mode	
Arguments	<pre>handle, startIndex, * noOfSamples, downSampleRatio, downSampleRatioMode, segmentIndex: see <u>ps5000aGetValues</u></pre>	
Returns	PICO_OK PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED PICO_INVALID_HANDLE PICO_INVALID_PARAMETER PICO_DRIVER_FUNCTION	

For more information, see <u>Using the GetValuesOverlapped functions</u>.

4.24.1 Using the GetValuesOverlapped functions

- 1. Open the oscilloscope using ps5000aOpenUnit.
- 2. Select channel ranges and AC/DC coupling using ps5000aSetChannel.
- 3. Using <u>ps5000aGetTimebase</u>, select timebases until the required nanoseconds per sample is located.
- 4. Use the trigger setup functions <u>ps5000aSetTriggerChannelConditions</u>, <u>ps5000aSetTriggerChannelDirections</u> and <u>ps5000aSetTriggerChannelProperties</u> to set up the trigger if required.
- 5. Use ps5000aSetDataBuffer to tell the driver where your memory buffer is.
- Set up the transfer of the block of data from the oscilloscope using ps5000aGetValuesOverlapped.
- 7. Start the oscilloscope running using ps5000aRunBlock.
- 8. Wait until the oscilloscope is ready using the <u>ps5000aBlockReady</u> callback (or poll using <u>ps5000aIsReady</u>).

- 9. Display the data.
- 10. Repeat steps 7 to 9 if needed.
- 11. Stop the oscilloscope by calling ps5000aStop.

A similar procedure can be used with <u>rapid block mode</u> using the ps5000aGetValuesOverlappedBulk function.

4.25 ps5000aGetValuesOverlappedBulk

```
PICO_STATUS ps5000aGetValuesOverlappedBulk
(
  int16_t
                          handle,
 uint32_t
                          startIndex,
 uint32_t
                        * noOfSamples,
 uint32_t
                          downSampleRatio,
                          downSampleRatioMode,
 PS5000A_RATIO_MODE
                          fromSegmentIndex,
 uint32 t
 uint32 t
                          toSegmentIndex,
                        * overflow
  int16_t
)
```

This function allows you to make a deferred data-collection request in rapid block mode. The request will be executed, and the arguments validated, when you call <u>ps5000aRunBlock</u>. The advantage of this method is that the driver makes contact with the scope only once, when you call <u>ps5000aRunBlock</u>, compared with the two contacts that occur when you use the conventional <u>ps5000aRunBlock</u>, <u>ps5000aGetValuesBulk</u> calling sequence. This slightly reduces the dead time between successive captures in rapid block mode.

After calling <u>ps5000aRunBlock</u>, you can optionally use <u>ps5000aGetValues</u> to request further copies of the data. This might be required if you wish to display the data with different data reduction settings.

Applicability	Rapid block mode
Arguments	<pre>handle, startIndex, * noOfSamples, downSampleRatio, downSampleRatioMode: see <u>ps5000aGetValues</u></pre>
	<pre>fromSegmentIndex, toSegmentIndex, * overflow, see ps5000aGetValuesBulk</pre>
Returns	PICO_OK PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED PICO_INVALID_HANDLE PICO_INVALID_PARAMETER PICO_DRIVER_FUNCTION

For more information, see Using the GetValuesOverlapped functions.

4.26 ps5000aGetValuesTriggerTimeOffsetBulk

PICO_STATUS ps5000aGetValuesTriggerTimeOffsetBulk

```
(
    int16_t handle,
    uint32_t * timesUpper,
    uint32_t * timesLower,
    PS5000A_TIME_UNITS * timeUnits,
    uint32_t fromSegmentIndex,
    uint32_t toSegmentIndex)
```

This function retrieves the trigger time offset for multiple waveforms obtained in <u>block</u> <u>mode</u> or <u>rapid block mode</u>. It is a more efficient alternative to calling <u>ps5000aGetTriggerTimeOffset</u> once for each waveform required. See <u>ps5000aGetTriggerTimeOffset</u> for an explanation of trigger time offsets.

There is another version of this function,

<u>ps5000aGetValuesTriggerTimeOffsetBulk64</u>, that returns trigger time offsets as 64-bit values instead of pairs of 32-bit values.

Applicability	Rapid block mode
Arguments	handle, the handle of the device
	* timesUpper, an array of integers. On exit, the most significant 32 bits of the time offset for each requested segment index. times[0] will hold the fromSegmentIndex time offset and the last times index will hold the toSegmentIndex time offset. The array must be long enough to hold the number of requested times.
	* timesLower, an array of integers. On exit, the least significant 32 bits of the time offset for each requested segment index. times[0] will hold the fromSegmentIndex time offset and the last times index will hold the toSegmentIndex time offset. The array size must be long enough to hold the number of requested times.
	* timeUnits, an array of integers. The array must be long enough to hold the number of requested times. On exit, timeUnits[0] will contain the time unit for fromSegmentIndex and the last element will contain the time unit for toSegmentIndex. Refer to <pre>ps5000aGetTriggerTimeOffset</pre> for specific figures
	fromSegmentIndex, the first segment for which the time offset is required
	toSegmentIndex, the last segment for which the time offset is required. If toSegmentIndex is less than fromSegmentIndex then the driver will wrap around from the last segment to the first.
Returns	PICO_OK PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED PICO_INVALID_HANDLE PICO_NOT_USED_IN_THIS_CAPTURE_MODE PICO_NOT_RESPONDING PICO_NULL_PARAMETER PICO_DEVICE_SAMPLING PICO_SEGMENT_OUT_OF_RANGE PICO_NO_SAMPLES_AVAILABLE

4.27 ps5000aGetValuesTriggerTimeOffsetBulk64

This function retrieves the 64-bit time offsets for waveforms captured in <u>rapid block</u> <u>mode</u>.

A 32-bit version of this function, <u>ps5000aGetValuesTriggerTimeOffsetBulk</u>, is available for use with programming languages that do not support 64-bit integers. See that function for an explanation of waveform time offsets.

old the time offset hold the time offset will hold the time g enough to hold
o hold the number time unit for tain the <u>timeOffset64</u> for
the time offset is in times[0] and
time offset is in the last oSegmentIndex Il wrap around
time offse in the las oSegment II wrap aro

4.28 ps5000alsReady

```
PICO_STATUS ps5000alsReady
(
    int16_t handle,
    int16_t * ready
)
```

This function may be used instead of a callback function to receive data from <u>ps5000aRunBlock</u>. To use this method, pass a NULL pointer as the lpReady argument to <u>ps5000aRunBlock</u>. You must then poll the driver to see if it has finished collecting the requested samples.

Applicability	Block mode
Arguments	handle, the handle of the required device
	* ready: output: indicates the state of the collection. If zero, the device is still collecting. If non-zero, the device has finished collecting
Poturne	and <u>ps5000aGetVatues</u> can be used to retrieve the data.
Keturns	PICO_OK PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION PICO_NULL_PARAMETER PICO_NO_SAMPLES_AVAILABLE PICO_CANCELLED PICO_NOT_RESPONDING

4.29 ps5000alsTriggerOrPulseWidthQualifierEnabled

```
PICO_STATUS ps5000aIsTriggerOrPulseWidthQualifierEnabled
(
    int16_t handle,
    int16_t * triggerEnabled,
    int16_t * pulseWidthQualifierEnabled
)
```

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability	Call after setting up the trigger, and just before calling either ps5000aRunBlock or ps5000aRunStreaming.
Arguments	handle, the handle of the required device
	* triggerEnabled, on exit, indicates whether the trigger will successfully be set when <u>ps5000aRunBlock</u> or <u>ps5000aRunStreaming</u> is called. A non-zero value indicates that the trigger is set, zero that the trigger is not set.
	* pulseWidthQualifierEnabled, on exit, indicates whether the pulse width qualifier will successfully be set when ps5000aRunBlock or ps5000aRunStreaming is called. A non-zero value indicates that the pulse width qualifier is set, zero that the pulse width qualifier is not set.
Returns	PICO_OK PICO_INVALID_HANDLE PICO_NULL_PARAMETER PICO_DRIVER_FUNCTION

4.30 ps5000aMaximumValue

```
PICO_STATUS ps5000aMaximumValue
(
    int16_t handle,
    int16_t * value
)
```

This function returns a status code and outputs the maximum ADC count value to a parameter. The output value depends on the currently selected resolution.

Applicability	All modes
Arguments	handle, the handle of the required device
	<pre>* value, pointer to an int16_t (output), set to the maximum ADC value.</pre>
Returns	PICO_OK PICO_USER_CALLBACK PICO_INVALID_HANDLE PICO_TOO_MANY_SEGMENTS PICO_MEMORY PICO_DRIVER_FUNCTION

4.31 ps5000aMemorySegments

```
PICO_STATUS ps5000aMemorySegments
(
    int16_t handle,
    uint32_t nSegments,
    int32_t * nMaxSamples
)
```

This function sets the number of memory segments that the scope will use.

When the scope is <u>opened</u>, the number of segments defaults to 1, meaning that each capture fills the scope's available memory. This function allows you to divide the memory into a number of segments so that the scope can store several waveforms sequentially.

Applicability	All modes
Arguments	handle, the handle of the required device
	nSegments, the number of segments required, from:
	1 to 65,535: PicoScope 5242A/B, 5243A/B, 5442A/B, 5443A/B 1 to 125,000: PicoScope 5244A, 5444A 1 to 250,000: PicoScope 5244B, 5444B
	Note that, at 12-bit resolution or higher, the maximum number of segments is 16,384 for the PicoScope 5242A and 5442A and 32,768 for the PicoScope 5242B and 5442B.
	* nMaxSamples, on exit, the number of samples available in each segment. This is the total number over all channels, so if more than one channel is in use then the number of samples available to each channel is nMaxSamples divided by the number of channels.
Returns	PICO_OK PICO_USER_CALLBACK PICO_INVALID_HANDLE PICO_TOO_MANY_SEGMENTS PICO_MEMORY
	PICO_DRIVER_FUNCTION

4.32 ps5000aMinimumValue

```
PICO_STATUS ps5000aMinimumValue
(
    int16_t handle,
    int16_t * value
)
```

This function returns a status code and outputs the minimum ADC count value to a parameter. The output value depends on the currently selected resolution.

Applicability	All modes
Arguments	handle, the handle of the required device
	* value, pointer to an int16_t, (output) set to the minimum ADC value.
Returns	PICO_OK PICO_USER_CALLBACK PICO_INVALID_HANDLE PICO_TOO_MANY_SEGMENTS PICO_MEMORY PICO_DRIVER_FUNCTION

4.33 ps5000aNoOfStreamingValues

```
PICO_STATUS ps5000aNoOfStreamingValues
(
    int16_t handle,
    uint32_t * noOfValues
)
```

This function returns the number of samples available after data collection in <u>streaming mode</u>. Call it after calling <u>ps5000aStop</u>.

Applicability	Streaming mode
Arguments	handle, the handle of the required device
	* noOfValues, on exit, the number of samples
Returns	PICO_OK
	PICO_INVALID_HANDLE
	PICO_NULL_PARAMETER
	PICO_NO_SAMPLES_AVAILABLE
	PICO_NOT_USED
	PICO_BUSY
	PICO_DRIVER_FUNCTION

4.34

This function opens a PicoScope 5000 Series scope attached to the computer. The maximum number of units that can be opened depends on the operating system, the kernel driver and the computer. If ps5000aOpenUnit is called without the power supply connected, the driver returns PICO_POWER_SUPPLY_NOT_CONNECTED.

nodes
 andle, on exit, the result of the attempt to open a scope: 1 : if the scope fails to open : if no scope is found • 0 : a number that uniquely identifies the scope valid handle is returned, it must be used in all subsequent calls PI functions to identify this scope.
erial, on entry, a null-terminated string containing the serial aber of the scope to be opened. If serial is NULL then the stion opens the first scope found; otherwise, it tries to open the be that matches the string.
olution, determines the resolution of the device when opened, available values are one of the <u>PS5000A_DEVICE_RESOLUTION</u> . solution is out of range the device will return O_INVALID_DEVICE_RESOLUTION.
0_OK 0_OS_NOT_SUPPORTED 0_INVALID_DEVICE_RESOLUTION. 0_OPEN_OPERATION_IN_PROGRESS 0_EEPROM_CORRUPT 0_KERNEL_DRIVER_TOO_OLD 0_FPGA_FAIL 0_MEMORY_CLOCK_FREQUENCY 0_FW_FAIL 0_MAX_UNITS_OPENED 0_NOT_FOUND (if the specified unit was not found) 0_NOT_RESPONDING 0_MEMORY_FAIL 0_ANALOG_BOARD 0_CONFIG_FAIL_AWG 0_INITIALISE_FPGA

4.35 ps5000aOpenUnitAsync

This function opens a scope without blocking the calling thread. You can find out when it has finished by periodically calling <u>ps5000aOpenUnitProgress</u> until that function returns a non-zero value.

Applicability	All modes
Arguments	 * status, a status code: 0 if the open operation was disallowed because another open operation is in progress
	resolution, determines the resolution of the device when opened, the available values are one of the <u>PS5000A_DEVICE_RESOLUTION</u> . If resolution is out of range the device will return PICO_INVALID_DEVICE_RESOLUTION.
Returns	PICO_OK PICO_INVALID_DEVICE_RESOLUTION PICO_OPEN_OPERATION_IN_PROGRESS PICO_OPERATION_FAILED

4.36 ps5000aOpenUnitProgress

```
PICO_STATUS ps5000aOpenUnitProgress
(
    int16_t * handle,
    int16_t * progressPercent,
    int16_t * complete
)
```

This function checks on the progress of a request made to <u>ps5000aOpenUnitAsync</u> to open a scope.

Applicability	Use after ps5000aOpenUnitAsync
Arguments	* handle: see <pre>ps5000aOpenUnit</pre> . This handle is valid only if the function returns PICO_OK.
	* progressPercent, on exit, the percentage progress towards opening the scope. 100% implies that the open operation is complete.
	* complete, set to 1 when the open operation has finished
Returns	PICO_OK PICO_NULL_PARAMETER PICO OPERATION FAILED

4.37 ps5000aPingUnit

```
PICO_STATUS ps5000aPingUnit
(
    int16_t handle
)
```

This function can be used to check that the already opened device is still connected to the USB port and communication is successful.

Applicability	All modes
Arguments	handle, the handle of the required device
Returns	PICO_OK PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED PICO_BUSY PICO_NOT_RESPONDING

4.38 ps5000aRunBlock

PICO_STATUS ps5000aR	ur	nBlock
<pre>int16_t int32_t int32_t uint32_t uint32_t uint32_t ps5000aBlockReady void)</pre>	*	<pre>handle, noOfPreTriggerSamples, noOfPostTriggerSamples, timebase, timeIndisposedMs, segmentIndex, lpReady, pParameter</pre>

This function starts collecting data in <u>block mode</u>. For a step-by-step guide to this process, see <u>Using block mode</u>.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples (see below for details). The total number of samples must not be more than the size of the <u>segment</u> referred to by segmentIndex.

Applicability	Block mode, rapid block mode
Arguments	handle, the handle of the required device.
	noOfPreTriggerSamples, the number of samples to return before the trigger event. If no trigger has been set, then this argument is added to noOfPostTriggerSamples to give the maximum number of data points (samples) to collect.
	noOfPostTriggerSamples, the number of samples to return after the trigger event. If no trigger event has been set, then this argument is added to noOfPreTriggerSamples to give the maximum number of data points to collect. If a trigger condition has been set, this specifies the number of data points to collect after a trigger has fired, and the number of samples to be collected is:
	noOfPreTriggerSamples + noOfPostTriggerSamples
	timebase, a number in the range 0 to 2^{32} -1. See the <u>guide to</u> calculating timebase values.
	* timeIndisposedMs, on exit, the time, in milliseconds, that the scope will spend collecting samples. This does not include any auto trigger timeout. If this pointer is null, nothing will be written here.
	segmentIndex, zero-based, specifies which <u>memory segment</u> to use.
	lpReady, a pointer to the <u>ps5000aBlockReady</u> callback function that the driver will call when the data has been collected. To use the <u>ps5000aIsReady</u> polling method instead of a callback function, set this pointer to NULL.
	* pParameter, a void pointer that is passed to the ps5000aBlockReady callback function. The callback can use this pointer to return arbitrary data to the application.

Returns	PICO_OK
	PICO_POWER_SUPPLY_CONNECTED
	PICO_POWER_SUPPLY_NOT_CONNECTED
	PICO_BUFFERS_NOT_SET (in Overlapped mode)
	PICO_INVALID_HANDLE
	PICO_USER_CALLBACK
	PICO_SEGMENT_OUT_OF_RANGE
	PICO_INVALID_CHANNEL
	PICO_INVALID_TRIGGER_CHANNEL
	PICO_INVALID_CONDITION_CHANNEL
	PICO_TOO_MANY_SAMPLES
	PICO_INVALID_TIMEBASE
	PICO_NOT_RESPONDING
	PICO_CONFIG_FAIL
	PICO_INVALID_PARAMETER
	PICO_NOT_RESPONDING
	PICO_TRIGGER_ERROR
	PICO_DRIVER_FUNCTION
	PICO_FW_FAIL
	PICO_NOT_ENOUGH_SEGMENTS (in Bulk mode)
	PICO_PULSE_WIDTH_QUALIFIER
	PICO_SEGMENT_OUT_OF_RANGE (in Overlapped mode)
	PICO_STARTINDEX_INVALID (in Overlapped mode)
	PICO_INVALID_SAMPLERATIO (in Overlapped mode)
	PICO_CONFIG_FAIL
T	
4.39 ps5000aRunStreaming

```
PICO_STATUS ps5000aRunStreaming
(
  int16_t
                           handle,
  uint32_t
                         * sampleInterval,
  PS5000A_TIME_UNITS
                           sampleIntervalTimeUnits,
  uint32_t
                           maxPreTriggerSamples,
                           maxPostTriggerSamples,
  uint32_t
  int16 t
                           autoStop,
  uint32 t
                           downSampleRatio,
                           downSampleRatioMode,
 PS5000A_RATIO_MODE
                           overviewBufferSize
 uint32_t
)
```

This function tells the oscilloscope to start collecting data in <u>streaming mode</u>. When data has been collected from the device it is <u>downsampled</u> if necessary and then delivered to the application. Call <u>ps5000aGetStreamingLatestValues</u> to retrieve the data. See <u>Using streaming mode</u> for a step-by-step guide to this process.

When a trigger is set, the total number of samples stored in the driver is the sum of maxPreTriggerSamples and maxPostTriggerSamples. If autoStop is false then this will become the maximum number of samples without downsampling.

Applicability	Streaming mode
Arguments	handle, the handle of the required device.
	* sampleInterval, on entry, the requested time interval between samples; on exit, the actual time interval used.
	<pre>sampleIntervalTimeUnits, the unit of time used for sampleInterval. Use one of these values: <u>PS5000A_FS</u> <u>PS5000A_PS</u> <u>PS5000A_NS</u> <u>PS5000A_US</u> <u>PS5000A_MS</u> <u>PS5000A_S</u></pre>
	maxPreTriggerSamples, the maximum number of raw samples before a trigger event for each enabled channel. If no trigger condition is set this argument is ignored.
	maxPostTriggerSamples, the maximum number of raw samples after a trigger event for each enabled channel. If no trigger condition is set, this argument states the maximum number of samples to be stored.
	autoStop, a flag that specifies if the streaming should stop when all of maxSamples have been captured.
	downSampleRatio, downSampleRatioMode: see <u>ps5000aGetValues</u>
	overviewBufferSize, the size of the overview buffers. These are temporary buffers used for storing the data before returning it to the application. The size is the same as the bufferLth value passed to ps5000aSetDataBuffer.
Returns	PICO_OK PICO_INVALID_HANDLE

PICO_ETS_MODE_SET
PICO_USER_CALLBACK
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_STREAMING_FAILED
PICO_NOT_RESPONDING
PICO_POWER_SUPPLY_CONNECTED
PICO_POWER_SUPPLY_NOT_CONNECTED
PICO_TRIGGER_ERROR
PICO_INVALID_SAMPLE_INTERVAL
PICO_INVALID_BUFFER
PICO_DRIVER_FUNCTION
PICO_FW_FAIL
PICO_MEMORY

4.40 ps5000aSetBandwidthFilter

```
PICO_STATUS ps5000aSetBandwidthFilter
(
    int16_t handle,
    PS5000A_CHANNEL channel,
    PS5000A_BANDWIDTH_LIMITER bandwidth
)
```

This function controls the hardware bandwidth limiter.

Applicability	All modes. All models.
Arguments	handle, the handle of the required device
	channel, the channel to be configured. The values are:
	PS5000A_CHANNEL_A: Channel A input
	PS5000A_CHANNEL_B: Channel B input
	PS5000A_CHANNEL_C: Channel C input
	PS5000A_CHANNEL_D: Channel D input
	bandwidth, the bandwidth is either PS5000A_BW_FULL or PS5000A_BW_20MHZ
Returns	PICO_OK PICO_INVALID_HANDLE PICO_INVALID_CHANNEL PICO_INVALID_BANDWIDTH

4.41 ps5000aSetChannel

```
PICO_STATUS ps5000aSetChannel
(
    int16_t handle,
    PS5000A_CHANNEL channel,
    int16_t enabled,
    PS5000A_COUPLING type,
    PS5000A_RANGE range,
    float analogueOffset
)
```

This function specifies whether an input channel is to be enabled, its input coupling type, voltage range, analog offset and bandwidth limit.

Applicability	All modes	
Arguments	handle, the handle of	f the required device
	channel, the channel	to be configured. The values are:
	PS5000A_CHANNEL	A: Channel A input
	PS5000A_CHANNEL	<u>B</u> : Channel B input
	PS5000A_CHANNEL	<u>_C</u> : Channel C input
	PS5000A_CHANNEL	_D: Channel D input
	enabled, whether or TRUE: enable FALSE: do not ena	not to enable the channel. The values are: ble
	type, the impedance a PS5000A_AC: 1 m accepts input freque 3 dB analog bandwi PS5000A_DC: 1 m accepts all input fre -3 dB analog bandw	and coupling type. The values are: egohm impedance, AC coupling. The channel encies from about 1 hertz up to its maximum - dth. egohm impedance, DC coupling. The scope quencies from zero (DC) up to its maximum <i>i</i> idth.
	range, the input voltage	ge range:
	PS5000A_10MV:	±10 mV
	PS5000A_20MV:	±20 mV
	PS5000A_50MV:	±50 mV
	<u>PS5000A_100MV</u> :	±100 mV
	<u>PS5000A_200MV</u> :	±200 mV
	<u>PS5000A_500MV</u> :	±500 mV
	<u>PS5000A_1V</u> :	±1 V
	<u>PS5000A_2V</u> :	±2 V
	<u>PS5000A_5V</u> :	±5 V
	PS5000A_10V:	±10 V
	PS5000A_20V:	±20 V
	analogueOffset, a v digitization. The allowa range selected for the ps5000aGetAnalogu	oltage to add to the input channel before able range of offsets depends on the input channel, as obtained from eOffset.

Returns	PICO_OK	
	PICO_USER_CALLBACK	
	PICO_INVALID_HANDLE	
	PICO_INVALID_CHANNEL	
	PICO_INVALID_VOLTAGE_RANGE	
	PICO_INVALID_COUPLING	
	PICO INVALID ANALOGUE OFFSET	
	PICO_DRIVER_FUNCTION	

4.42 ps5000aSetDataBuffer

```
PICO_STATUS ps5000aSetDataBuffer
(
    int16_t handle,
    PS5000A_CHANNEL channel,
    int16_t * buffer,
    int32_t bufferLth,
    uint32_t segmentIndex,
    PS5000A_RATIO_MODE mode
)
```

This function tells the driver where to store the data, either unprocessed or <u>downsampled</u>, that will be returned after the next call to one of the GetValues functions. The function allows you to specify only a single buffer, so for aggregation mode, which requires two buffers, you need to call <u>ps5000aSetDataBuffers</u> instead.

You must allocate memory for the buffer before calling this function.

Applicability	Block, rapid block and streaming modes. All downsampling modes	
	except aggregation.	
Arguments	handle, the handle of the required device	
	channel, the channel you want to use with the buffer. Use one of these values:	
	PS5000A_CHANNEL_A	
	PS5000A_CHANNEL_B	
	PS5000A_CHANNEL_C	
	* buffer, the location of the buffer	
	bufferLth, the size of the buffer array	
	segmentIndex, the number of the memory segment to be used	
	mode, the <u>downsampling</u> mode. See <u>ps5000aGetValues</u> for the	
	available modes, but note that a single call to	
	downsampling mode. If you intend to call ps5000aGetValues with	
	more than one downsampling mode activated, then you must call	
	<pre>ps5000aSetDataBuffer several times to associate a separate</pre>	
	buffer with each downsampling mode.	
Returns	PICO_OK	
	PICO_INVALID_HANDLE	
	PICO_INVALID_CHANNEL	
	PICO_RATIO_MODE_NOT_SUPPORTED	
	PICO_SEGMENI_OUI_OF_KANGE	
	PICO_DAIVER_FUNCTION DICO_INVALID_DARAMETER	

4.43 ps5000aSetDataBuffers

```
PICO_STATUS ps5000aSetDataBuffers
(
                            handle,
  int16_t
  PS5000A_CHANNEL
                            channel,
  int16_t
                          * bufferMax,
  int16_t
                          * bufferMin,
  int32_t
                            bufferLth,
  uint32 t
                            segmentIndex,
  PS5000A_RATIO_MODE
                            mode
)
```

This function tells the driver the location of one or two buffers for receiving data. You need to allocate memory for the buffers before calling this function. If you do not need two buffers, because you are not using <u>aggregate</u> mode, then you can optionally use <u>ps5000aSetDataBuffer</u> instead.

the buffers. Use
i data values in otherwise.
aggregated data
fferMin arrays.
ment to be used

4.44 ps5000aSetDeviceResolution

This function sets the new resolution. When using 12 bits or more the memory is halved. When using 15-bit resolution only 2 channels can be enabled to capture data, and when using 16-bit resolution only one channel is available. If resolution is changed, any data captured that has not been saved will be lost. If ps5000aSetChannel is not called, ps5000aRunBlock and ps5000aRunStreaming may fail.

Applicability	All modes
Arguments	 handle, on exit, the result of the attempt to open a scope: -1 : if the scope fails to open 0 : if no scope is found > 0 : a number that uniquely identifies the scope If a valid handle is returned, it must be used in all subsequent calls to API functions to identify this scope.
	resolution, determines the resolution of the device when opened, the available values are one of the <u>PS5000A_DEVICE_RESOLUTION</u> . If resolution is out of range the device will return PICO_INVALID_DEVICE_RESOLUTION.
Returns	PICO_OK PICO_INVALID_DEVICE_RESOLUTION PICO_OS_NOT_SUPPORTED PICO_OPEN_OPERATION_IN_PROGRESS PICO_EEPROM_CORRUPT PICO_KERNEL_DRIVER_TOO_OLD PICO_FPGA_FAIL PICO_MEMORY_CLOCK_FREQUENCY PICO_FW_FAIL PICO_MAX_UNITS_OPENED PICO_NOT_FOUND (if the specified unit was not found) PICO_NOT_RESPONDING PICO_MEMORY_FAIL PICO_ANALOG_BOARD PICO_CONFIG_FAIL_AWG PICO_INITIALISE_FPGA PICO_POWER_SUPPLY_NOT_CONNECTED

4.45 ps5000aSetEts pICO_STATUS ps5000aSetEts (int16_t handle, PS5000A_ETS_MODE mode, int16_t etsCycles, int16_t etsInterleave, int32_t * sampleTimePicoseconds)

This function is used to enable or disable $\underline{\text{ETS}}$ (equivalent-time sampling) and to set the ETS parameters. See $\underline{\text{ETS}}$ overview for an explanation of ETS mode.

Applicability	Block mode
Arguments	handle, the handle of the required device
	 mode, the ETS mode. Use one of these values: PS5000A_ETS_OFF: disables ETS PS5000A_ETS_FAST: enables ETS and provides etsCycles of data, which may contain data from previously returned cycles PS5000A_ETS_SLOW: enables ETS and provides fresh data every etsCycles. This mode takes longer to provide each data set, but the data sets are more stable and are guaranteed to contain only new data.
	<pre>etsCycles, the number of cycles to store: the computer can then select etsInterleave cycles to give the most uniform spread of samples. Range: between two and five times the value of etsInterleave, and not more than either: PS5242A_MAX_ETS_CYCLES PS5243A_MAX_ETS_CYCLES PS5244A_MAX_ETS_CYCLES</pre>
	etsInterleave, the number of waveforms to combine into a single ETS capture. Maximum value is either: <u>PS5242A_MAX_INTERLEAVE</u> <u>PS5243A_MAX_INTERLEAVE</u> <u>PS5244A_MAX_INTERLEAVE</u>
	* sampleTimePicoseconds, on exit, the effective sampling interval of the ETS data. For example, if the captured sample time is 4 ns and etsInterleave is 10, then the effective sample time in ETS mode is 400 ps.
Returns	PICO_OK PICO_USER_CALLBACK PICO_INVALID_HANDLE PICO_INVALID_PARAMETER PICO_DRIVER_FUNCTION

4.46 ps5000aSetEtsTimeBuffer

```
PICO_STATUS ps5000aSetEtsTimeBuffer
(
    int16_t handle,
    int64_t * buffer,
    int32_t bufferLth
)
```

This function tells the driver where to find your application's ETS time buffers. These buffers contain the 64-bit timing information for each ETS sample after you run a <u>block-mode</u> ETS capture.

Applicability	ETS mode only.
	If your programming language does not support 64-bit data, use the 32-bit version <u>ps5000aSetEtsTimeBuffers</u> instead.
Arguments	handle, the handle of the required device
	* buffer, an array of 64-bit words, each representing the time in femtoseconds (10 ⁻¹⁵ s) at which the sample was captured
	bufferLth, the size of the buffer array
Returns	PICO_OK PICO_INVALID_HANDLE PICO_NULL_PARAMETER PICO_DRIVER_FUNCTION

4.47 ps5000aSetEtsTimeBuffers

```
PICO_STATUS ps5000aSetEtsTimeBuffers
(
    int16_t handle,
    uint32_t * timeUpper,
    uint32_t * timeLower,
    int32_t bufferLth
)
```

This function tells the driver where to find your application's ETS time buffers. These buffers contain the timing information for each ETS sample after you run a <u>block-mode</u> ETS capture. There are two buffers containing the upper and lower 32-bit parts of the timing information, to allow programming languages that do not support 64-bit data to retrieve the timings.

Applicability	ETS mode only.	
	If your programming language supports 64-bit data then you can use <u>ps5000aSetEtsTimeBuffer</u> instead.	
Arguments	handle, the handle of the required device	
	* timeUpper, an array of 32-bit words, each representing the upper 32 bits of the time in femtoseconds $(10^{-15} s)$ at which the sample was captured	
	* timeLower, an array of 32-bit words, each representing the lower 32 bits of the time in femtoseconds at which the sample was captured	
	bufferLth, the size of the timeUpper and timeLower arrays	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_NULL_PARAMETER PICO_DRIVER_FUNCTION	

4.48 ps5000aSetNoOfCaptures

```
PICO_STATUS ps5000aSetNoOfCaptures
(
    int16_t handle,
    uint32_t nCaptures
)
```

This function sets the number of captures to be collected in one run of <u>rapid block</u> <u>mode</u>. If you do not call this function before a run, the driver will capture only one waveform. Once a value has been set, the value remains constant unless changed.

Applicability	Rapid block mode	
Arguments	handle, the handle of the device	
	nCaptures, the number of waveforms to capture in one run	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_INVALID_PARAMETER PICO_DRIVER_FUNCTION	

4.49 ps5000aSetPulseWidthQualifier

```
PICO_STATUS ps5000aSetPulseWidthQualifier
(
  int16_t
                                 handle,
  PS5000A_PWQ_CONDITIONS
                               * conditions,
  int16_t
                                 nConditions,
  PS5000A_THRESHOLD_DIRECTION
                                 direction,
  uint32_t
                                 lower,
  uint32 t
                                 upper,
  PS5000A_PULSE_WIDTH_TYPE
                                 type
)
```

This function sets up pulse-width qualification, which can be used on its own for pulsewidth triggering or combined with threshold triggering, level triggering or window triggering to produce more complex triggers. The pulse-width qualifier is set by defining one or more structures that are then ORed together. Each structure is itself the AND of the states of one or more of the inputs. This AND-OR logic allows you to create any possible Boolean function of the scope's inputs.

Applicability	All modes
Arguments	handle, the handle of the required device
	* conditions, an array of <u>PS5000A_PWQ_CONDITIONS</u> structures specifying the conditions that should be applied to each channel. In the simplest case, the array consists of a single element. When there are several elements, the overall trigger condition is the logical OR of all the elements. If conditions is NULL then the pulse-width qualifier is not used.
	nConditions, the number of elements in the conditions array. If nConditions is zero then the pulse-width qualifier is not used. Range: 0 to <u>PS5000A_MAX_PULSE_WIDTH_QUALIFIER_COUNT</u> .
	direction, the direction of the signal required for the pulse width trigger to fire. See <u>PS5000A_THRESHOLD_DIRECTION</u> constants for the list of possible values. Each channel of the oscilloscope (except the EXT input) has two thresholds for each direction—for example, <u>PS5000A_RISING</u> and <u>PS5000A_RISING_LOWER</u> —so that one can be used for the pulse-width qualifier and the other for the level trigger. The driver will not let you use the same threshold for both triggers; so, for example, you cannot use <u>PS5000A_RISING</u> as the direction argument for both <u>ps5000A_RISING</u> as the direction argument for both <u>ps5000A_RISING</u> as the same time. There is no such restriction when using window triggers.
	<pre>lower, the lower limit of the pulse-width counter, in samples. upper, the upper limit of the pulse-width counter, in samples. This parameter is used only when the type is set to PS5000A_PW_TYPE_IN_RANGE or PS5000A_PW_TYPE_OUT_OF_RANGE.</pre>

	type, the pulse-width type, one of these constants:
	<pre>PS5000A_PW_TYPE_NONE: do not use the pulse width qualifier</pre>
	<pre>PS5000A_PW_TYPE_LESS_THAN: pulse width less than lower</pre>
	PS5000A_PW_TYPE_GREATER_THAN: pulse width greater than
	lower
	<pre>PS5000A_PW_TYPE_IN_RANGE: pulse width between lower and</pre>
	upper
	<pre>PS5000A_PW_TYPE_OUT_OF_RANGE: pulse width not between</pre>
	lower and upper
Returns	PICO_OK
	PICO_INVALID_HANDLE
	PICO_USER_CALLBACK
	PICO_CONDITIONS
	PICO_PULSE_WIDTH_QUALIFIER
	PICO_DRIVER_FUNCTION

4.49.1 ps5000a_PWQ_CONDITIONS structure

A structure of this type is passed to <u>ps5000aSetPulseWidthQualifier</u> in the conditions argument to specify the trigger conditions. It is defined as follows:

```
typedef struct tPS5000APwqConditions
{
    PS5000A_TRIGGER_STATE channelA;
    PS5000A_TRIGGER_STATE channelB;
    PS5000A_TRIGGER_STATE channelC;
    PS5000A_TRIGGER_STATE channelD;
    PS5000A_TRIGGER_STATE external;
    PS5000A_TRIGGER_STATE aux;
} PS5000A_PWQ_CONDITIONS
```

Each structure is the logical AND of the states of the scope's inputs. The <u>ps5000aSetPulseWidthQualifier</u> function can OR together a number of these structures to produce the final pulse width qualifier, which can therefore be any possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack() instruction.

Applicability	All models	
Elements	channelA, channelB, channelC*, channelD*, external:	
	the type of condition that should be applied to each channel. Use	
	these constants: -	
	PS5000A_CONDITION_DONT_CARE	
	PS5000A_CONDITION_TRUE	
PS5000A_CONDITION_FALSE		
The channels that are set to PS5000A_CONDITION_TRUE or		
PS5000A_CONDITION_FALSE must all meet their conditions		
simultaneously to produce a trigger. Channels set to PS5000A_CONDITION_DONT_CARE are ignored.		
	aux: not used	

*Note: applicable to 4-channel analog devices only.

4.50 ps5000aSetSigGenArbitrary

PICO_STATUS ps5000aSetSigGenArbit	trary
<pre>(int16_t int32_t uint32_t uint32_t uint32_t uint32_t uint32_t uint32_t int16_t int32_t PS5000A_SWEEP_TYPE PS5000A_EXTRA_OPERATIONS PS5000A_INDEX_MODE uint32_t uint32_t PS5000A_SIGGEN_TRIG_TYPE PS5000A_SIGGEN_TRIG_SOURCE int16_t)</pre>	<pre>handle, offsetVoltage, pkToPk, startDeltaPhase, stopDeltaPhase, deltaPhaseIncrement, dwellCount, * arbitraryWaveform, arbitraryWaveformSize, sweepType, operation, indexMode, shots, sweeps, triggerType, triggerSource, extInThreshold</pre>

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator (AWG) uses direct digital synthesis (DDS). It maintains a 32-bit phase accumulator that indicates the present location in the waveform. The top bits of the phase accumulator are used as an index into a buffer containing the arbitrary waveform. The remaining bits act as the fractional part of the index, enabling high-resolution control of output frequency and allowing the generation of lower frequencies.

The phase accumulator initially increments by startDeltaPhase. If the AWG is set to sweep mode, the phase increment is increased or decreased at specified intervals until it reaches stopDeltaPhase. The easiest way to obtain the values of startDeltaPhase and stopDeltaPhase necessary to generate the desired frequency is to call ps5000aSigGenFrequencyToPhase. Alternatively, see Calculating deltaPhase below for more information on how to calculate these values.

Applicability	All modes. B models only.
Arguments	handle, the handle of the required device offsetVoltage, the voltage offset, in microvolts, to be applied to
	<pre>the waveform. pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal. Note that if the signal voltages defined by the combination of offsetVoltage and pkToPk extend outside the voltage range of the signal generator, the output waveform will be clipped.</pre>
	startDeltaPhase, the initial value added to the phase accumulator as the generator begins to step through the waveform buffer.

stopDeltaPhase, the final value added to the phase accumulator before the generator restarts or reverses the sweep.
deltaPhaseIncrement, the amount added to the delta phase value every time the dwellCount period expires. This determines the amount by which the generator sweeps the output frequency in each dwell period.
dwellCount, the time, in 50 ns steps, between successive additions of deltaPhaseIncrement to the delta phase accumulator. This determines the rate at which the generator sweeps the output frequency. Minimum value: <u>PS5000A_MIN_DWELL_COUNT</u>
* arbitraryWaveform, a buffer that holds the waveform pattern as a set of samples equally spaced in time. If pkToPk is set to its maximum (4 V) and offsetVoltage is set to 0, then a sample of -32768 corresponds to -2 V, and $+32767$ to $+2$ V.
arbitraryWaveformSize, the size of the arbitrary waveform buffer, in samples, from <u>MIN_SIG_GEN_BUFFER_SIZE</u> to <u>PS5X42A_MAX_SIG_GEN_BUFFER_SIZE</u> , <u>PS5X43A_MAX_SIG_GEN_BUFFER_SIZE</u> or <u>PS5X44A_MAX_SIG_GEN_BUFFER_SIZE</u> , depending on the oscilloscope model
sweepType, determines whether the startDeltaPhase is swept up to the stopDeltaPhase, down to it, or repeatedly up and down. Use one of these values: <u>PS5000A_UP</u> <u>PS5000A_DOWN</u> <u>PS5000A_UPDOWN</u> <u>PS5000A_DOWNUP</u>
<pre>operation, the type of waveform to be produced, specified by one of the following enumerated types: <u>PS5000A_ES_OFF</u>, normal signal generator operation specified by wavetype. <u>PS5000A_WHITENOISE</u>, the signal generator produces white noise and ignores all settings except pkToPk and offsetVoltage. <u>PS5000A_PRBS</u>, produces a random bitstream with a bit rate specified by the start and stop frequency.</pre>
indexMode, specifies how the signal will be formed from the arbitrary waveform data. <u>Single and dual index modes</u> are possible. Use one of these constants: <u>PS5000A_SINGLE</u> <u>PS5000A_DUAL</u>
shots, sweeps, triggerType, triggerSource, extInThreshold: see ps5000aSigGenBuiltIn

Returns PICO_OK PICO_AWG_NOT_SUPPORTED PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED	
PICO_AWG_NOT_SUPPORTED PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTED	
PICO_POWER_SUPPLY_CONNECTED	
PICO POWER SUPPLY NOT CONNECTED	
PICO_BUSY	
PICO_INVALID_HANDLE	
PICO_SIG_GEN_PARAM	
PICO_SHOTS_SWEEPS_WARNING	
PICO_NOT_RESPONDING	
PICO_WARNING_EXT_THRESHOLD_CONFLICT	
PICO_NO_SIGNAL_GENERATOR	
PICO_SIGGEN_OFFSET_VOLTAGE	
PICO SIGGEN PK TO PK	
PICO SIGGEN OUTPUT OVER VOLTAGE	
PICO DRIVER FUNCTION	
PICO_SIGGEN_WAVEFORM_SETUP_FAILED	

4.50.1 AWG index modes

The <u>arbitrary waveform generator</u> supports **single** and **dual** index modes to help you make the best use of the waveform buffer.

Single mode. The generator outputs the raw contents of the buffer repeatedly. This mode is the only one that can generate asymmetrical waveforms. You can also use this mode for symmetrical waveforms, but the dual mode makes more efficient use of the buffer memory.

Dual mode. The generator outputs the contents of the buffer from beginning to end, and then does a second pass in the reverse direction through the buffer. This allows you to specify only the first half of a waveform with twofold symmetry, such as a Gaussian function, and let the generator fill in the other half.

4.50.2 Calculating deltaPhase

The arbitrary waveform generator steps through the waveform by adding a *deltaPhase* value between 1 and *phaseAccumulatorSize-1* to the phase accumulator every *dacPeriod* (*1/dacFrequency*). If the *deltaPhase* is constant, the generator produces a waveform at a constant frequency that can be calculated as follows:

phaseAccumulatorSize	=	maximum count of phase accumulator (see table below)
awgBufferSize	=	maximum AWG buffer size (see table below)
arbitraryWaveformSize	=	length in samples of the user-defined waveform

You can call <u>ps5000aSigGenFrequencyToPhase</u> to calculate the value for *deltaPhase* for the desired frequency.

It is also possible to sweep the frequency by continually modifying the *deltaPhase*. This is done by setting up a *deltaPhaseIncrement* that the oscilloscope adds to the *deltaPhase* at specified intervals.

Parameter	PicoScope 5242B PicoScope 5442B	PicoScope 5243B PicoScope 5443B	PicoScope 5244B PicoScope 5444B
dacFrequency	200 MHz		
dacPeriod (= 1/dacFrequency)	5 ns		
phaseAccumulatorSize	4 294 967 296 (2 ³²)		
awgBufferSize	16 384 (2 ¹⁴)	32 768 (2 ¹⁵)	49 152 (3 × 2 ¹⁴)

4.51 ps5000aSetSigGenBuiltIn

PICO_STATUS ps5000aSetSigGenBuil	tIn
<pre>int16_t int32_t uint32_t PS5000A_WAVE_TYPE float float float float float pS5000A_SWEEP_TYPE PS5000A_SWEEP_TYPE PS5000A_EXTRA_OPERATIONS uint32_t uint32_t PS5000A_SIGGEN_TRIG_TYPE PS5000A_SIGGEN_TRIG_SOURCE int16_t</pre>	<pre>handle, offsetVoltage, pkToPk, waveType, startFrequency, increment, dwellTime, sweepType, operation, shots, sweeps, triggerType, triggerSource, extInThreshold</pre>
)	

This function sets up the signal generator to produce a signal from a list of built-in waveforms. If different start and stop frequencies are specified, the device will sweep either up, down or up and down.

Applicability	All models		
Arguments	handle, the handle of the required device		
	offsetVoltage, the voltage offset, in microvolts, to be ap the waveform		
	pkToPk, the peak-to-peak voltage, in microvolts, of the waveform		
Note that if the signal voltages described by the combination offsetVoltage and pkToPk extend outside the voltage ra the signal generator, the output waveform will be clipped.		scribed by the combination of end outside the voltage range of aveform will be clipped.	
	waveType, the type of waveform to	be generated.	
	PS5000A_SINE PS5000A_SQUARE PS5000A_TRIANGLE PS5000A_DC_VOLTAGE	sine wave square wave triangle wave DC voltage	
	The following waveTypes apply to PS5000A_RAMP_UP PS5000A_RAMP_DOWN PS5000A_SINC PS5000A_GAUSSIAN PS5000A_HALF_SINE	B models only: rising sawtooth falling sawtooth sin (x)/x Gaussian half (full-wave rectified) sine	
	startFrequency, the frequency the initially produce. For allowable values <u>PS5000A_SINE_MAX_FREQUENCY</u> and the start of th	nat the signal generator will s see nd related values.	

stopFrequency, the frequency at which the sweep reverses direction or returns to the initial frequency
increment, the amount of frequency increase or decrease in sweep mode
dwellTime, the time for which the sweep stays at each frequency, in seconds
sweepType, whether the frequency will sweep from startFrequency to stopFrequency, in the opposite direction, or repeatedly reverse direction. Use one of these constants: <u>PS5000A_UP</u> <u>PS5000A_DOWN</u> <u>PS5000A_UPDOWN</u> <u>PS5000A_DOWNUP</u>
<pre>operation, the type of waveform to be produced, specified by one of the following enumerated types (B models only): <u>PS5000A_ES_OFF</u>, normal signal generator operation specified by wavetype. <u>PS5000A_WHITENOISE</u>, the signal generator produces white noise and ignores all settings except pkToPk and offsetVoltage. <u>PS5000A_PRBS</u>, produces a random bitstream with a bit rate specified by the start and stop frequency.</pre>
<pre>shots, 0: sweep the frequency as specified by sweeps 1PS5000A_MAX_SWEEPS_SHOTS: the number of cycles of the waveform to be produced after a trigger event. sweeps must be zero. PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start and run continuously after trigger occurs</pre>
<pre>sweeps, 0: produce number of cycles specified by shots 1<u>PS5000A_MAX_SWEEPS_SHOTS</u>: the number of times to sweep the frequency after a trigger event, according to sweepType. shots must be zero. <u>PS5000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN</u>: start a sweep and continue after trigger occurs</pre>
triggerType, the type of trigger that will be applied to the signal generator:
PS5000A_SIGGEN_RISINGtrigger on rising edgePS5000A_SIGGEN_FALLINGtrigger on falling edgePS5000A_SIGGEN_GATE_HIGHrun while trigger is highPS5000A_SIGGEN_GATE_LOWrun while trigger is low

	triggerSource, the source that will	trigger the signal generator.
	PS5000A_SIGGEN_NONE PS5000A_SIGGEN_SCOPE_TRIG PS5000A_SIGGEN_EXT_IN PS5000A_SIGGEN_SOFT_TRIG	run without waiting for trigger use scope trigger use EXT input wait for software trigger provided by <u>ps5000aSigGenSoftwareCo</u> ntrol
	PS5000A_SIGGEN_TRIGGER_RAW	reserved
	If a trigger source other than <u>P5000A</u> either shots or sweeps, but not both,	<u>SIGGEN_NONE</u> is specified, then must be non-zero.
	extInThreshold, used to set trigge	r level for external trigger.
Returns	PICO_OK PICO_BUSY PICO_POWER_SUPPLY_CONNECTED PICO_POWER_SUPPLY_NOT_CONNECTE PICO_INVALID_HANDLE PICO_SIG_GEN_PARAM PICO_SHOTS_SWEEPS_WARNING PICO_NOT_RESPONDING PICO_WARNING_AUX_OUTPUT_CONFLI PICO_WARNING_EXT_THRESHOLD_CON PICO_NO_SIGNAL_GENERATOR PICO_SIGGEN_OFFSET_VOLTAGE PICO_SIGGEN_PK_TO_PK PICO_SIGGEN_OUTPUT_OVER_VOLTAGC PICO_DRIVER_FUNCTION DICO_SIGCEN_WAVEFORM_SETUD_EAD	ED ICT IFLICT BE
	PICO_SIGGEN_WAVEFORM_SETUP_FAI	עשנו

4.52 ps5000aSetSigGenBuiltInV2

PICO_STATUS ps5000aSetSigGenBuiltIn

```
(
  int16_t
                                    handle,
  int32_t
                                    offsetVoltage,
  uint32 t
                                    pkToPk,
  PS5000A_WAVE_TYPE
                                    waveType,
  float
                                    startFrequency,
  float
                                    stopFrequency,
  float
                                    increment,
  float
                                    dwellTime,
  PS5000A_SWEEP_TYPE
                                   sweepType,
 PS5000A EXTRA OPERATIONS
                                   operation,
 uint32 t
                                    shots,
  uint32 t
                                    sweeps,
 PS5000A_SIGGEN_TRIG_TYPE
                                    triggerType,
  PS5000A_SIGGEN_TRIG_SOURCE
                                    triggerSource,
                                    extInThreshold
  int16_t
)
```

This function is the same as ps5000aSetSigGenBuiltIn, except that it allows you to set the frequency arguments with greater precision. It sets up the signal generator to produce a signal from a list of built-in waveforms. If different start and stop frequencies are specified, the device will sweep either up, down or up and down.

Applicability	All models
Arguments	handle, the handle of the required device
	offsetVoltage,
	wavelype,
	startFrequency,
	stopfrequency,
	lincrement,
	dwellTime,
	sweeplype,
	operation,
	snots,
	sweeps,
	triggerlype,
	triggerSource,
	extInThreshold: see <u>ps5000aSetSigGenBuiltIn</u>
Returns	PICO_OK
	PICO_BUSY
	PICO_POWER_SUPPLY_CONNECTED
	PICO_POWER_SUPPLY_NOT_CONNECTED
	PICO_INVALID_HANDLE
	PICO_SIG_GEN_PARAM
	PICO_SHOTS_SWEEPS_WARNING
	PICO_NOT_RESPONDING
	PICO_WARNING_AUX_OUTPUT_CONFLICT
	PICO_WARNING_EXT_THRESHOLD_CONFLICT
	PICO_NO_SIGNAL_GENERATOR
	PICO_SIGGEN_OFFSET_VOLTAGE
	PICO_SIGGEN_PK_TO_PK
	PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
	PICO_DRIVER_FUNCTION
	PICO_SIGGEN_WAVEFORM_SETUP_FAILED
	PICO_NOT_RESPONDING

4.53 ps5000aSetSigGenPropertiesArbitrary

```
PICO_STATUS ps5000aSetSigGenPropertiesArbitrary
(
  int16_t
                                handle,
  uint32_t
                                startDeltaPhase,
  uint32_t
                                stopDeltaPhase,
  uint32_t
                                deltaPhaseIncrement,
  uint32_t
                                dwellCount,
  PS5000A SWEEP TYPE
                                sweepType,
  uint32 t
                                shots,
  uint32_t
                                sweeps,
  PS5000A_SIGGEN_TRIG_TYPE
                                triggerType,
  PS5000A_SIGGEN_TRIG_SOURCE
                                triggerSource,
  int16_t
                                extInThreshold
)
```

This function reprograms the arbitrary waveform generator. All values can be reprogrammed while the oscilloscope is waiting for a trigger.

Applicability	All modes
Arguments	See ps5000aSetSigGenArbitrary
Returns	See <u>ps5000aSetSigGenArbitrary</u> PICO_OK if successful. PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION PICO_NO_SIGNAL_GENERATOR PICO_WARNING_AUX_OUTPUT_CONFLICT PICO_WARNING_EXT_THRESHOLD_CONFLICT PICO_SIGGEN_OFFSET_VOLTAGE PICO_SIGGEN_OFFSET_VOLTAGE PICO_SIGGEN_PK_TO_PK PICO_SIGGEN_OFFSET_VOLTAGE PICO_SIG_GEN_PARAM PICO_SHOTS_SWEEPS_WARNING PICO_BUSY PICO_SIGGEN_WAVEFORM_SETUP_FAILED PICO_NOT_RESPONDING PICO_POWER_SUPPLY_UNDERVOLTAGE PICO_POWER_SUPPLY_NOT_CONNECTED
	PICO_POWER_SUPPLY_CONNECTED

4.54 ps5000aSetSigGenPropertiesBuiltIn

```
PICO_STATUS ps5000aSetSigGenPropertiesBuiltIn
(
  int16_t
                              handle,
  double
                               startFrequency,
  double
                               stopFrequency,
  double
                               increment,
  double
                              dwellTime,
 PS5000A SWEEP TYPE
                              sweepType,
 uint32_t
                              shots,
 uint32_t
                              sweeps,
  PS5000A_SIGGEN_TRIG_TYPE triggerType,
 PS5000A_SIGGEN_TRIG_SOURCE triggerSource,
  int16_t
                               extInThreshold
)
```

This function reprograms the signal generator. Values can be changed while the oscilloscope is waiting for a trigger.

Applicability	All modes
Arguments	See ps5000aSetSigGenBuiltIn
Returns	PICO_OK if successful. PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION PICO_NO_SIGNAL_GENERATOR PICO_SIG_GEN_PARAM PICO_WARNING_AUX_OUTPUT_CONFLICT PICO_WARNING_EXT_THRESHOLD_CONFLICT PICO_SIGGEN_DC_VOLTAGE_NOT_CONFIGURABLE PICO_BUSY PICO_SIGGEN_WAVEFORM_SETUP_FAILED PICO_NOT_RESPONDING PICO_POWER_SUPPLY_UNDERVOLTAGE PICO_POWER_SUPPLY_UNDERVOLTAGE PICO_POWER_SUPPLY_NOT_CONNECTED PICO_POWER_SUPPLY_CONNECTED

4.55 ps5000aSetSimpleTrigger

PICO_STATUS ps5000aSetSimpleTri	gger
<pre>(int16_t int16_t <u>PS5000A_CHANNEL</u> int16_t <u>PS5000A_THRESHOLD_DIRECTION</u> uint32_t int16_t)</pre>	handle, enable, source, threshold, direction, delay, autoTrigger_ms
/	

This function simplifies arming the trigger. It supports only the LEVEL trigger types and does not allow more than one channel to have a trigger applied to it. Any previous pulse width qualifier is cancelled.

All modes
handle, the handle of the required device.
enable, zero to disable the trigger, any non-zero value to set the trigger.
source, the channel on which to trigger.
threshold, the ADC count at which the trigger will fire.
direction, the direction in which the signal must move to cause a trigger. The following directions are supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING.
delay, the time between the trigger occurring and the first sample. For example, if delay=100 then the scope would wait 100 sample periods before sampling. At a <u>timebase</u> of 500 MS/s, or 2 ns per sample, the total delay would then be 100 x 2 ns = 200 ns. Range: 0 to <u>MAX_DELAY_COUNT</u> .
autoTrigger_ms, the number of milliseconds the device will wait if no trigger occurs. If this is set to zero, the scope device will wait indefinitely for a trigger.
PICO_OK PICO_INVALID_CHANNEL PICO_INVALID_PARAMETER PICO_MEMORY PICO_CONDITIONS PICO_INVALID_HANDLE PICO_USER_CALLBACK

4.56 ps5000aSetTriggerChannelConditions

This function sets up trigger conditions on the scope's inputs. The trigger is defined by one or more <u>PS5000A_TRIGGER_CONDITIONS</u> structures that are then ORed together. Each structure is itself the AND of the states of one or more of the inputs. This AND-OR logic allows you to create any possible Boolean function of the scope's inputs.

If complex triggering is not required, use ps5000aSetSimpleTrigger.

Applicability	All modes
Arguments	handle, the handle of the required device.
	* conditions, an array of <u>PS5000A_TRIGGER_CONDITIONS</u> structures specifying the conditions that should be applied to each channel. In the simplest case, the array consists of a single element. When there is more than one element, the overall trigger condition is the logical OR of all the elements.
	If nConditions is zero then triggering is switched off.
Returns	PICO_OK PICO_INVALID_HANDLE PICO_USER_CALLBACK PICO_CONDITIONS PICO_MEMORY PICO DRIVER FUNCTION

4.56.1 PS5000A_TRIGGER_CONDITIONS structure

A structure of this type is passed to <u>ps5000aSetTriggerChannelConditions</u> in the conditions argument to specify the trigger conditions, and is defined as follows:

```
typedef struct tPS5000ATriggerConditions
{
    PS5000A_TRIGGER_STATE channelA;
    PS5000A_TRIGGER_STATE channelB;
    PS5000A_TRIGGER_STATE channelC;
    PS5000A_TRIGGER_STATE channelD;
    PS5000A_TRIGGER_STATE external;
    PS5000A_TRIGGER_STATE aux;
    PS5000A_TRIGGER_STATE pulseWidthQualifier;
} PS5000A_TRIGGER_CONDITIONS
```

Each structure is the logical AND of the states of the scope's inputs. The <u>ps5000aSetTriggerChannelConditions</u> function can OR together a number of these structures to produce the final trigger condition, which can be any possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack() instruction.

ciements	channelA, channelB, channelC, channelD, external, pulseWidthQualifier: the type of condition that should be
	applied to each channel. Use these constants: <u>PS5000A_CONDITION_DONT_CARE</u> <u>PS5000A_CONDITION_TRUE</u> <u>PS5000A_CONDITION_FALSE</u>
	The channels that are set to <u>PS5000A_CONDITION_TRUE</u> or <u>PS5000A_CONDITION_FALSE</u> must all meet their conditions simultaneously to produce a trigger. Channels set to <u>PS5000A_CONDITION_DONT_CARE</u> are ignored.

4.57 ps5000aSetTriggerChannelDirections

```
PICO_STATUS ps5000aSetTriggerChannelDirections
(
    int16_t handle,
    PS5000A_THRESHOLD_DIRECTION channelA,
    PS5000A_THRESHOLD_DIRECTION channelB,
    PS5000A_THRESHOLD_DIRECTION channelC;
    PS5000A_THRESHOLD_DIRECTION channelD;
    PS5000A_THRESHOLD_DIRECTION ext,
    PS5000A_THRESHOLD_DIRECTION aux
)
```

This function sets the direction of the trigger for each channel.

Applicability	All modes	
Arguments	handle, the handle of the required device	
	channelA, channelB, channelC, channelD, ext, the direction in which the signal must pass through the threshold to activate the trigger. See the <u>table</u> below for allowable values. If using a level trigger in conjunction with a pulse-width trigger, see the description of the direction argument to <u>ps5000aSetPulseWidthQualifier</u> for more information.	
	aux: not used	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_USER_CALLBACK PICO_INVALID_PARAMETER	

PS5000A_THRESHOLD_DIRECTION constants

PS5000A_ABOVE	for gated triggers: above the upper threshold
PS5000A_ABOVE_LOWER	for gated triggers: above the lower threshold
PS5000A_BELOW	for gated triggers: below the upper threshold
PS5000A_BELOW_LOWER	for gated triggers: below the lower threshold
PS5000A_RISING	for threshold triggers: rising edge, using upper threshold
PS5000A_RISING_LOWER	for threshold triggers: rising edge, using lower threshold
PS5000A_FALLING	for threshold triggers: falling edge, using upper threshold
PS5000A_FALLING_LOWER	for threshold triggers: falling edge, using lower threshold
PS5000A_RISING_OR_FALLING	for threshold triggers: either edge
PS5000A_INSIDE	for window-qualified triggers: inside window
PS5000A_OUTSIDE	for window-qualified triggers: outside window
PS5000A_ENTER	for window triggers: entering the window
PS5000A_EXIT	for window triggers: leaving the window
PS5000A_ENTER_OR_EXIT	for window triggers: either entering or leaving
	the window
PS5000A_POSITIVE_RUNT	for window-qualified triggers
PS5000A_NEGATIVE_RUNT	for window-qualified triggers
PS5000A_NONE	no trigger

4.58 ps5000aSetTriggerChannelProperties

PICO_STATUS ps5000aSetTriggerChannelProperties
(

```
int16_t handle,
PS5000A_TRIGGER_CHANNEL_PROPERTIES * channelProperties,
int16_t nChannelProperties,
int16_t auxOutputEnable,
int32_t autoTriggerMilliseconds
```

This function is used to enable or disable triggering and set its parameters.

Applicability	All modes
Arguments	handle, the handle of the required device.
	* channelProperties, a pointer to an array of <u>PS5000A_TRIGGER_CHANNEL_PROPERTIES</u> structures describing the requested properties. The array can contain a single element describing the properties of one channel, or a number of elements describing several channels. If NULL is passed, triggering is switched off.
	nChannelProperties, the size of the channelProperties array. If zero, triggering is switched off.
	auxOutputEnable: not used
	autoTriggerMilliseconds, the time in milliseconds for which the scope device will wait before collecting data if no trigger event occurs. If this is set to zero, the scope device will wait indefinitely for a trigger
Returns	PICO_OK PICO_INVALID_HANDLE PICO_USER_CALLBACK PICO_TRIGGER_ERROR PICO_MEMORY PICO_INVALID_TRIGGER_PROPERTY PICO_DRIVER_FUNCTION PICO_INVALID_PARAMETER

4.58.1 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps5000aSetTriggerChannelProperties in the channelProperties argument to specify the trigger mechanism, and is defined as follows: -

```
typedef struct tPS5000ATriggerChannelProperties
{
  int16_t
                            thresholdUpper;
 uint16 t
                            thresholdUpperHysteresis;
  int16 t
                            thresholdLower;
 uint16 t
                            thresholdLowerHysteresis;
 PS5000A_CHANNEL
                            channel;
  PS5000A_THRESHOLD_MODE thresholdMode;
```

} PS5000A_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack() instruction.

Elements	thresholdUpper, the upper threshold at which the trigger must fire. This is scaled in 16-bit <u>ADC counts</u> at the currently selected range for that channel.
	thresholdUpperHysteresis, the hysteresis by which the trigger must exceed the upper threshold before it will fire. It is scaled in 16- bit counts.
	thresholdLower, the lower threshold at which the trigger must fire. This is scaled in 16-bit <u>ADC counts</u> at the currently selected range for that channel.
	thresholdLowerHysteresis, the hysteresis by which the trigger must exceed the lower threshold before it will fire. It is scaled in 16- bit counts.
	channel, the channel to which the properties apply. This can be one of the four input channels listed under <pre>ps5000aSetChannel</pre> , or <pre>PS5000A_TRIGGER_AUX</pre> for the AUX input.
	thresholdMode, either a level or window trigger. Use one of these constants: PS5000A_LEVEL PS5000A_WINDOW

4.59 ps5000aSetTriggerDelay

```
PICO_STATUS ps5000aSetTriggerDelay
(
    int16_t handle,
    uint32_t delay
)
```

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger event.

Applicability	All modes (but delay is ignored in streaming mode)	
Arguments	handle, the handle of the required device	
	delay, the time between the trigger occurring and the first sample. For example, if delay = 100 then the scope would wait 100 sample periods before sampling. At a <u>timebase</u> of 500 MS/s, or 2 ns per sample, the total delay would then be: $100 \times 2 \text{ ns} = 200 \text{ ns}$	
	Range: 0 to MAX_DELAY_COUNT	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_USER_CALLBACK PICO_DRIVER_FUNCTION	

int16_t		handle,
int16_t	*	<pre>minArbitraryWaveformValue,</pre>
int16_t	*	<pre>maxArbitraryWaveformValue,</pre>
uint32_t	*	<pre>minArbitraryWaveformSize,</pre>
uint32_t	*	maxArbitraryWaveformSize

This function returns the range of possible sample values and waveform buffer sizes that can be supplied to <u>ps5000aSetSignGenArbitrary</u> for setting up the arbitrary waveform generator (AWG). These values vary between different models in the PicoScope 5000 Series.

Applicability	All models with AWG
Arguments	handle, the handle of the required device.
	minArbitraryWaveformValue, on exit, the lowest sample value allowed in the arbitraryWaveform buffer supplied to <pre>ps5000aSetSignGenArbitrary.</pre>
	maxArbitraryWaveformValue, on exit, the highest sample value allowed in the arbitraryWaveform buffer supplied to <pre>ps5000aSetSignGenArbitrary</pre> .
	minArbitraryWaveformSize, on exit, the minimum value allowed for the arbitraryWaveformSize argument supplied to <pre>ps5000aSetSignGenArbitrary</pre>
	maxArbitraryWaveformSize, on exit, the maximum value allowed for the arbitraryWaveformSize argument supplied to <pre>ps5000aSetSignGenArbitrary</pre>
Returns	PICO_OK PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not have an arbitrary waveform generator. PICO_NULL_PARAMETER, if all the parameter pointers are NULL. PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION

4.61 ps5000aSigGenFrequencyToPhase

PICO_STATUS ps5000aSigGenFrequencyToPhase
(
 int16_t handle,
 double frequency,
 PS5000A_INDEX_MODE indexMode,
 uint32_t bufferLength,
 uint32_t * phase
)

This function converts a frequency to a phase count for use with the arbitrary waveform generator (AWG). The value returned depends on the length of the buffer, the index mode passed and the device model. The phase count can then be sent to the driver through <u>ps5000aSetSigGenArbitrary</u> or <u>ps5000aSetSigGenPropertiesArbitrary</u>.

Applicability	All models with AWG
Arguments	handle, the handle of the required device.
	frequency, the required AWG output frequency.
	indexMode, see <u>AWG index modes</u> .
	bufferLength, the number of samples in the AWG buffer.
	phase, on exit, the deltaPhase argument to be sent to the AWG setup function
Returns	PICO_OK PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not have an AWG. PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE, if the frequency is out of range. PICO_NULL_PARAMETER, if phase is a NULL pointer. PICO_SIG_GEN_PARAM, if indexMode or bufferLength is out of
	range. PICO_INVALID_HANDLE PICO_DRIVER_FUNCTION

4.62 ps5000aSigGenSoftwareControl

```
PICO_STATUS ps5000aSigGenSoftwareControl
(
    int16_t handle,
    int16_t state
)
```

This function causes a trigger event, or starts and stops gating. It is used when the signal generator is set to <u>SIGGEN_SOFT_TRIG</u>.

Gating occurs when the trigger type is set to either <u>PS5000A_SIGGEN_GATE_HIGH</u> or <u>PS5000A_SIGGEN_GATE_LOW</u>. With other trigger types, calling this function causes the signal generator to trigger immediately.

Applicability	Use with ps5000aSetSigGenBuiltIn or		
	ps5000aSetSigGenArbitrary.		
Arguments	handle, the handle of the required device		
	state, sets the trigger gate high or low:		
	0: gate low condition		
	<> 0: gate high condition		
	Ignored if trigger type is not set to either		
	PS5000A_SIGGEN_GATE_HIGH or PS5000A_SIGGEN_GATE_LOW.		
Returns	PICO_OK		
	PICO_INVALID_HANDLE		
	PICO_NO_SIGNAL_GENERATOR		
	PICO_SIGGEN_TRIGGER_SOURCE		
	PICO_DRIVER_FUNCTION		
	PICO_NOT_RESPONDING		

4.63 ps5000aStop

PICO_STATUS	ps5000aStop
(int16_t	handle
)	

This function stops the scope device from sampling data.

When running the device in <u>streaming mode</u>, you should always call this function after the end of a capture to ensure that the scope is ready for the next capture.

When running the device in <u>block mode</u>, <u>ETS mode</u> or <u>rapid block mode</u>, you can call this function to interrupt data capture.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

Applicability	All modes	
Arguments	handle, the handle of the required device.	
Returns	PICO_OK PICO_INVALID_HANDLE PICO_USER_CALLBACK PICO_DRIVER_FUNCTION	
4.64 ps5000aStreamingReady (callback)

```
typedef void (CALLBACK *ps5000aStreamingReady)
(
            handle,
  int16_t
  int32_t
           noOfSamples,
 uint32_t startIndex,
  int16_t
           overflow,
 uint32_t triggerAt,
  int16_t triggered,
  int16_t
            autoStop,
          * pParameter
  void
)
```

This <u>callback</u> function is part of your application. You register it with the driver using <u>ps5000aGetStreamingLatestValues</u>, and the driver calls it back when streamingmode data is ready. You can then download the data using the <u>ps5000aGetValuesAsync</u> function.

Your callback function should do nothing more than copy the data to another buffer within your application. To maintain the best application performance, the function should return as quickly as possible without attempting to process or display the data.

Applicability	Streaming mode only			
Arguments	handle, the handle of the device returning the samples.			
	noOfSamples, the number of samples to collect.			
	startIndex, an index to the first valid sample in the buffer. This is the buffer that was previously passed to $ps5000aSetDataBuffer$.			
overflow, returns a set of flags that indicate whether an overvoltage has occurred on any of the channels. It is a bit with bit 0 denoting Channel A.				
	triggerAt, an index to the buffer indicating the location of the trigger point relative to startIndex. This parameter is valid only when triggered is non-zero.			
	triggered, a flag indicating whether a trigger occurred. If non- zero, a trigger occurred at the location indicated by triggerAt.			
	autoStop, the flag that was set in the call to			
	ps5000aRunStreaming.			
* pParameter, a void pointer passed from				
	ps5000aGetStreamingLatestValues. The callback function can			
	the application.			
<u>Returns</u>	nothing			

4.65 Wrapper functions

The software development kits (SDKs) for PicoScope devices contain wrapper dynamic link library (DLL) files in the lib subdirectory of your SDK installation for 32-bit and 64-bit systems. The wrapper functions provided by the wrapper DLLs are for use with programming languages such as MathWorks MATLAB, National Instruments LabVIEW and Microsoft Excel VBA that do not support features of the C programming language such as callback functions.

The source code contained in the wrapper projects contains a description of the functions and the input and output parameters.

Below we explain the sequence of calls required to capture data in streaming mode using the wrapper API functions.

The ps5000aWrap.dll wrapper DLL has a callback function for streaming data collection that copies data from the driver buffer specified to a temporary application buffer of the same size. To do this, the driver and application buffers must be registered with the wrapper and the corresponding channel(s) must be specified as being enabled. You should process the data in the temporary application buffer accordingly, for example by copying the data into a large array.

Procedure:

1. Open the oscilloscope using ps5000aOpenUnit.

1a. Inform the wrapper of the number of channels on the device by calling setChannelCount.

2. Select channels, ranges and AC/DC coupling using ps5000aSetChannel.

2a. Inform the wrapper which channels have been enabled by calling setEnabledChannels.

3. Use the appropriate trigger setup functions. For programming languages that do not support structures, use the wrapper's advanced trigger setup functions.

4. Call <u>ps5000aSetDataBuffer</u> (or for aggregated data collection ps5000aSetDataBuffers) to tell the driver where your data buffer(s) is(are).

4a. Register the data buffer(s) with the wrapper and set the application buffer(s) into which the data will be copied. Call setAppAndDriverBuffers (or setMaxMinAppAndDriverBuffers for aggregated data collection).

5. Start the oscilloscope running using ps5000aRunStreaming.

6. Loop and call GetStreamingLatestValues and IsReady to get data and flag when the wrapper is ready for data to be retrieved.

6a. Call the wrapper's AvailableData function to obtain information on the number of samples collected and the start index in the buffer.

6b. Call the wrapper's IsTriggerReady function for information on whether a trigger has occurred and the trigger index relative to the start index in the buffer.

7. Process data returned to your application data buffers.

8. Call AutoStopped if the autoStop parameter has been set to TRUE in the call to ps5000aRunStreaming.

9. Repeat steps 6 to 8 until AutoStopped returns true or you wish to stop data collection.

10. Call ps5000aStop, even if the autoStop parameter was set to TRUE.

11. To disconnect a device, call ps5000aCloseUnit.

5 Programming examples

Your PicoScope SDK installation includes programming examples in various languages and development environments.

6 Driver status codes

Every function in the ps5000a driver returns a **driver status code** from the following list of PICO_STATUS values. These definitions can also be found in the file picoStatus.h, which is included in the Pico Technology SDK. Not all codes apply to the ps5000a driver.

Code (hex)	Symbol and meaning		
00	PICO_OK		
	The oscilloscope is functioning correctly		
01	PICO_MAX_UNITS_OPENED		
	An attempt has been made to open more than PS5000A_MAX_UNITS		
02	PICO_MEMORY_FAIL		
	Not enough memory could be allocated on the host machine		
03	PICO_NOT_FOUND		
	No oscilloscope could be found		
04	PICO_FW_FAIL		
	Unable to download firmware		
05	PICO_OPEN_OPERATION_IN_PROGRESS		
06	PICO_OPERATION_FAILED		
07	PICO_NOT_RESPONDING		
	The oscilloscope is not responding to commands from the PC		
08	PICO_CONFIG_FAIL		
	The configuration information in the oscilloscope has become corrupt or is missing		
09	PICO_KERNEL_DRIVER_TOO_OLD		
	The picopp.sys file is too old to be used with the device driver		
0A	PICO_EEPROM_CORRUPT		
	The EEPROM has become corrupt, so the device will use a default setting		
0B	PICO_OS_NOT_SUPPORTED		
	The operating system on the PC is not supported by this driver		
0C	PICO_INVALID_HANDLE		
	There is no device with the handle value passed		
0D	PICO_INVALID_PARAMETER		
	A parameter value is not valid		
OE	PICO_INVALID_TIMEBASE		
	The timebase is not supported or is invalid		
OF	PICO_INVALID_VOLTAGE_RANGE		
1.0	The voltage range is not supported or is invalid		
	PICO_INVALID_CHANNEL		
1.1	The channel number is not valid on this device or no channels have been set		
	PICO_INVALID_TRIGGER_CHANNEL		
1.0	The channel set for a trigger is not available on this device		
	PICO_INVALID_CONDITION_CHANNEL		
1.2			
113	PICO_NO_SIGNAL_GENERATOR		
14			
1 1	Streaming has failed to start or has stopped without user request		
15			
	Block failed to start - a parameter may have been set wrongly		
16	DICO NIII.I. DARAMETER		
1	A parameter that was required is NULL		
18	DICO DATA NOT AVAILABLE		
	No data is available from a run block call		
16 18	Block failed to start - a parameter may have been set wrongly PICO_NULL_PARAMETER A parameter that was required is NULL PICO_DATA_NOT_AVAILABLE No data is available from a run block call		

19	PICO_STRING_BUFFER_TOO_SMALL
	The buffer passed for the information was too small
1A	PICO_ETS_NOT_SUPPORTED
	ETS is not supported on this device
1B	PICO_AUTO_TRIGGER_TIME_TOO_SHORT
	The auto trigger time is less than the time it will take to collect the pre-trigger data
1C	PICO_BUFFER_STALL
	The collection of data has stalled as unread data would be overwritten
1D	PICO_TOO_MANY_SAMPLES
	Number of samples requested is more than available in the current memory segment
1E	PICO_TOO_MANY_SEGMENTS
	Not possible to create number of segments requested
1F	PICO_PULSE_WIDTH_QUALIFIER
	A null pointer has been passed in the trigger function or one of the parameters is out
	of range
20	PICO_DELAY
	One or more of the hold-off parameters are out of range
21	PICO_SOURCE_DETAILS
	One or more of the source details are incorrect
22	PICO_CONDITIONS
	One or more of the conditions are incorrect
23	PICO_USER_CALLBACK
	The driver's thread is currently in the ps5000aBlockReady or
	ps5000aStreamingReady callback function and therefore the action cannot be
0.4	
24	PICO_DEVICE_SAMPLING
	An attempt is being made to get stored data while streaming. Either stop streaming by
25	PICO_NO_SAMPLES_AVAILABLE
26	because a run nas not been completed
20	PICO_SEGMENT_OUT_OF_RANGE
27	
21	PICO_BUSI
28	
20	The start time to get stored date is out of range
20	
29	PICO_INVALID_INFO
27	
ZA	The bandle is invalid so no information is available about the device. Only
2B	
	The sample interval selected for streaming is out of range
20	
20	PICO_IRIGGER_ERROR
	PICO_MEMORY
25	
35	PICO_SIGGEN_OUTPUT_OVER_VOLTAGE
	voltage the signal generator can produce
36	
	ITTO_DITATIONIN MILL pointer passed as delay parameter
27	
51	PICO_INVALID_BUFFER
20	
130	The appled offect voltage is out of range
30	
60	LTCO DIGEN LV IO LV

	The analog peak to peak voltage is out of range	
3A	PICO_CANCELLED	
	A block collection has been cancelled	
3в	PICO_SEGMENT_NOT_USED	
	The segment index is not currently being used	
3C	PICO_INVALID_CALL	
	The wrong GetValues function has been called for the collection mode in use	
3F	PICO_NOT_USED	
	The function is not available	
40	PICO_INVALID_SAMPLERATIO	
	The aggregation ratio requested is out of range	
41	PICO_INVALID_STATE	
	Device is in an invalid state	
42	PICO_NOT_ENOUGH_SEGMENTS	
	The number of segments allocated is fewer than the number of captures requested	
43	PICO_DRIVER_FUNCTION	
	You called a driver function while another driver function was still being processed	
	PICO_RESERVED	
45	PICO_INVALID_COUPLING	
	An invalid coupling type was specified in ps5000aSetChannel	
46	PICO BUFFERS NOT SET	
	An attempt was made to get data before a <u>data buffer</u> was defined	
47	PICO_RATIO_MODE_NOT_SUPPORTED	
	The selected downsampling mode (used for data reduction) is not allowed	
49	PICO_INVALID_TRIGGER_PROPERTY	
	An invalid parameter was passed to ps5000aSetTriggerChannelProperties	
4A	PICO INTERFACE NOT CONNECTED	
	The driver was unable to contact the oscilloscope	
4D	PICO_SIGGEN_WAVEFORM_SETUP_FAILED	
	A problem occurred in ps5000aSetSigGenBuiltIn or	
	ps5000aSetSigGenArbitrary	
4E	PICO_FPGA_FAIL	
	FPGA not successfully set up	
4F	PICO_POWER_MANAGER	
50	PICO_INVALID_ANALOGUE_OFFSET	
	An impossible analog offset value was specified in ps5000aSetChannel	
51	PICO PLL LOCK FAILED	
	Unable to configure the oscilloscope	
52	PICO ANALOG BOARD	
	The oscilloscope's analog board is not detected, or is not connected to the digital	
	board	
53	board PICO_CONFIG_FAIL_AWG	
53	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator	
53 54	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA	
53 54	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened	
53 54 56	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID	
53 54 56	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID The frequency for the external clock is not within ±5% of the stated value	
53 54 56 57	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID The frequency for the external clock is not within ±5% of the stated value PICO_CLOCK_CHANGE_ERROR	
53 54 56 57	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID The frequency for the external clock is not within ±5% of the stated value PICO_CLOCK_CHANGE_ERROR The FPGA could not lock the clock signal	
53 54 56 57 58	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID The frequency for the external clock is not within ±5% of the stated value PICO_CLOCK_CHANGE_ERROR The FPGA could not lock the clock signal PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH	
53 54 56 57 58	board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID The frequency for the external clock is not within ±5% of the stated value PICO_CLOCK_CHANGE_ERROR The FPGA could not lock the clock signal PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH You are trying to configure the AUX input as both a trigger and a reference clock	
53 54 56 57 58 59	boardPICO_CONFIG_FAIL_AWGUnable to configure the signal generatorPICO_INITIALISE_FPGAThe FPGA cannot be initialized, so unit cannot be openedPICO_EXTERNAL_FREQUENCY_INVALIDThe frequency for the external clock is not within ±5% of the stated valuePICO_CLOCK_CHANGE_ERRORThe FPGA could not lock the clock signalPICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASHYou are trying to configure the AUX input as both a trigger and a reference clockPICO_PWQ_AND_EXTERNAL_CLOCK_CLASH	
53 54 56 57 58 59	boardPICO_CONFIG_FAIL_AWGUnable to configure the signal generatorPICO_INITIALISE_FPGAThe FPGA cannot be initialized, so unit cannot be openedPICO_EXTERNAL_FREQUENCY_INVALIDThe frequency for the external clock is not within ±5% of the stated valuePICO_CLOCK_CHANGE_ERRORThe FPGA could not lock the clock signalPICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASHYou are trying to configure the AUX input as both a trigger and a reference clockPICO_PWQ_AND_EXTERNAL_CLOCK_CLASHYou are trying to configure the AUX input as both a pulse width qualifier and a	
53 54 56 57 58 59	boardPICO_CONFIG_FAIL_AWGUnable to configure the signal generatorPICO_INITIALISE_FPGAThe FPGA cannot be initialized, so unit cannot be openedPICO_EXTERNAL_FREQUENCY_INVALIDThe frequency for the external clock is not within ±5% of the stated valuePICO_CLOCK_CHANGE_ERRORThe FPGA could not lock the clock signalPICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASHYou are trying to configure the AUX input as both a trigger and a reference clockPICO_PWQ_AND_EXTERNAL_CLOCK_CLASHYou are trying to configure the AUX input as both a pulse width qualifier and a reference clock	
53 54 56 57 58 59 5A	 board PICO_CONFIG_FAIL_AWG Unable to configure the signal generator PICO_INITIALISE_FPGA The FPGA cannot be initialized, so unit cannot be opened PICO_EXTERNAL_FREQUENCY_INVALID The frequency for the external clock is not within ±5% of the stated value PICO_CLOCK_CHANGE_ERROR The FPGA could not lock the clock signal PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH You are trying to configure the AUX input as both a trigger and a reference clock PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH You are trying to configure the AUX input as both a pulse width qualifier and a reference clock PICO_UNABLE_TO_OPEN_SCALING_FILE 	

5B	PICO_MEMORY_CLOCK_FREQUENCY
E C	
15C	PICO_IZC_NOT_RESPONDING
עפן	PICO_NO_CAPIURES_AVAILABLE There are no contures available and therefore no data can be returned
E 17	
DF	The conture mode the device is surrently running in does not support the surrent
	request
103	PICO_GET_DATA_ACTIVE
	Reserved
104	PICO_IP_NETWORKED
	The device is currently connected via the IP Network socket and thus the call made is
105	
105	An ID address that is not correct has been passed to the driver
106	
	The IP socket has failed
107	
	The IP socket has timed out
108	PTCO SETTINGS FAILED
100	The settings requested have failed to be set
109	PICO NETWORK FAILED
	The network connection has failed
10A	PICO WS2 32 DLL NOT LOADED
	Unable to load the WS2 DLL
10B	PICO INVALID IP PORT
	The IP port is invalid
10C	PICO_COUPLING_NOT_SUPPORTED
	The type of coupling requested is not supported on the opened device
10D	PICO_BANDWIDTH_NOT_SUPPORTED
	Bandwidth limit is not supported on the opened device
10E	PICO_INVALID_BANDWIDTH
	The value requested for the bandwidth limit is out of range
10F	PICO_AWG_NOT_SUPPORTED
	The arbitrary waveform generator is not supported by the opened device
110	PICO_ETS_NOT_RUNNING
	Data has been requested with ETS mode set but run block has not been called, or stop
	has been called
	PICO_SIG_GEN_WHITENOISE_NOT_SUPPORTED
110	
	The wave type requested is not supported by the energy device
116	
110	Siggen does not generate pseudo-random binary sequence
117	DICO FTS NOT AVAILABLE WITH LOCIC CHANNELS
± ± /	When a digital port is enabled ETS sample mode is not available for use
118	PTCO WARNING REPEAT VALUE
	Not applicable to this device
119	PICO POWER SUPPLY CONNECTED
	4-channel only - the DC power supply is connected
11A	PICO_POWER_SUPPLY_NOT_CONNECTED
	4-channel only - the DC power supply isn't connected
11B	PICO_POWER_SUPPLY_REQUEST_INVALID
	Incorrect power mode passed for current power source
11C	PICO_POWER_SUPPLY_UNDERVOLTAGE
1	

	The supply voltage from the USB source is too low	
11D	PICO_CAPTURING_DATA	
	The device is currently busy capturing data	
11E	PICO_USB3_0_DEVICE_NON_USB3_0_PORT	
	A Pico USB 3.0 device has been connected to a non-USB 3.0 port	
11F	PICO_NOT_SUPPORTED_BY_THIS_DEVICE	
	A function has been called that is not supported by the current device variant	
120	PICO_INVALID_DEVICE_RESOLUTION	
	The device resolution is invalid (out of range)	
121	PICO_INVALID_NO_CHANNELS_FOR_RESOLUTION	
	The number of channels which can be enabled is limited in 15 and 16-bit modes	
122	PICO_CHANNEL_DISABLED_DUE_TO_USB_POWERED	
	USB power not sufficient to power all channels	

7 Enumerated types and constants

The enumerated types used used by the ps5000a driver are defined in the file ps5000aApi.h. We recommend that you refer to these constants by name unless your programming language allows only numerical values.

8 Numeric data types

Here is a list of the sizes and ranges of the numeric data types used in the $\ensuremath{\mathsf{ps5000a}}$ API.

Туре	Bits	Signed or unsigned?
int16_t	16	signed
enum	32	enumerated
int32_t	32	signed
uint32_t	32	unsigned
float	32	signed (IEEE 754)
int64_t	64	signed
double	64	signed (IEEE 754)

9 Glossary

Aggregation. The ps5000a driver can use a method called aggregation to reduce the amount of data your application needs to process. This means that for every block of consecutive samples, it stores only the minimum and maximum values. You can set the number of samples in each block, called the aggregation parameter, when you call ps5000aRunStreaming for real-time capture, and when you call ps5000aGetStreamingLatestValues to obtain post-processed data.

Aliasing. An effect that can cause digital oscilloscopes to display fast-moving waveforms incorrectly, by showing spurious low-frequency signals ("aliases") that do not exist in the input. To avoid this problem, choose a sampling rate that is at least twice the frequency of the fastest-changing input signal.

Analog bandwidth. All oscilloscopes have an upper limit to the range of frequencies at which they can measure accurately. The analog bandwidth of an oscilloscope is defined as the frequency at which a displayed sine wave has half the power of the input sine wave (or, equivalently, about 71% of the amplitude).

Block mode. A sampling mode in which the computer prompts the oscilloscope to collect a block of data into its internal memory before stopping the oscilloscope and transferring the whole block into computer memory. This mode of operation is effective when the input signal being sampled is high frequency. Note: To avoid **aliasing** effects, the maximum input frequency must be less than half the sampling rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer memory is used by the oscilloscope to temporarily store data before transferring it to the PC.

Callback. A mechanism that the ps5000a driver uses to communicate asynchronously with your application. At design time, you add a function (a *callback* function) to your application to deal with captured data. At run time, when you request captured data from the driver, you also pass it a pointer to your function. The driver then returns control to your application, allowing it to perform other tasks until the data is ready. When this happens, the driver calls your function in a new thread to signal that the data is ready. It is then up to your function to communicate this fact to the rest of your application.

Coupling mode. This mode selects either AC or DC coupling in the oscilloscope's input path. Use AC mode for small signals that may be superimposed on a DC level. Use DC mode for measuring absolute voltage levels. Set the coupling mode using ps5000aSetChannel.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by accumulating information over many similar wave cycles. This means the oscilloscope can capture fast-repeating signals that have a higher frequency than the maximum sampling rate. Note: ETS should not be used for one-shot or non-repetitive signals.

External trigger. This is the BNC socket marked **EXT** or **Ext**. It can be used to start a data collection run but cannot be used to record data.

Flexible power. The 5000 Series oscilloscopes can be powered by either the twoheaded USB cable supplied for obtaining power from two USB ports, or a single USB port and the AC adapter (included with 4-channel models only). **Maximum sampling rate.** A figure indicating the maximum number of samples the oscilloscope is capable of acquiring per second. Maximum sample rates are given in MS/s (megasamples per second). The higher the sampling capability of the oscilloscope, the more accurate the representation of the high frequencies in a fast signal.

Overvoltage. Any input voltage to the oscilloscope must not exceed the overvoltage limit, measured with respect to ground, otherwise the oscilloscope may be permanently damaged.

Signal generator. The signal generator output is the BNC socket marked **GEN** or **Gen** on the oscilloscope. If you connect a BNC cable between this and one of the channel inputs, you can send a signal into one of the channels. It can generate a sine, square or triangle wave that can be swept back and forth.

Streaming mode. A sampling mode in which the oscilloscope samples data and returns it to the computer in an unbroken stream. This mode of operation is effective when the input signal being sampled contains only low frequencies.

USB 1.1. An early version of the Universal Serial Bus standard found on older PCs. Although your PicoScope 5000 Series device will work with a USB 1.1 port, it will operate much more slowly than with a USB 2.0 or 3.0 port.

USB 2.0. A typical USB 2.0 port supports a data transfer rate that is 40 times faster than USB 1.1. USB 2.0 is backwards-compatible with USB 1.1.

USB 3.0. A typical USB 3.0 port supports a data transfer rate that is 10 times faster than USB 2.0. USB 3.0 is backwards-compatible with USB 2.0 and USB 1.1.

Vertical resolution. A value, in bits, indicating the degree of precision with which the oscilloscope can turn input voltages into digital values. Calculation techniques can improve the effective resolution.

Voltage range. The voltage range is the difference between the maximum and minimum voltages that can be accurately captured by the oscilloscope.

Index

A

AC/DC control 116 AC/DC coupling 72 Access 2 ADC count 59, 61 Aggregation 18, 116 Aliasing 116 Analog bandwidth 116 Analog offset 33, 72 API function calls 24 Arbitrary waveform generator 84,86 buffer lengths 101 sample values 101

В

Bandwidth limiter 72 Block mode 6, 7, 8, 116 asynchronous call 10 callback 26 polling status 57 running 67 using 9 Buffer size 116

С

Callback 116 Callback function 7 block mode 26 definition 30 ETS mode 16 streaming mode 105 Channels enabling 72 settings 72 Closing units 28 Communication 66 Connection 66 Constants 114 Copyright 2 Coupling mode 116 Coupling type, setting 72

D

Data acquisition 18 Data buffers declaring 74 declaring, aggregation mode 75 Data retention 8 Downsampling 8, 47 maximum ratio 36 modes 48 Driver 4 status codes 109

E

Enabling channels 72 Enumerated types 114 Enumerating oscilloscopes 31 ETS 116 overview 16 setting time buffers 78, 79 setting up 77 using 17 External trigger 116

F

Fitness for purpose 2 Flexible power 116 **Functions** overview 24 ps5000aBlockReady 26 ps5000aChangePowerSource 27 ps5000aCloseUnit 28 ps5000aCurrentPowerSource 29 ps5000aDataReady 30 ps5000aEnumerateUnits 31 ps5000aFlashLed 32 ps5000aGetAnalogueOffset 33 ps5000aGetChannelInformation 34 ps5000aGetDeviceResolution 35 ps5000aGetMaxDownSampleRatio 36 ps5000aGetMaxSegments 37 ps5000aGetNoOfCaptures 38, 39 ps5000aGetStreamingLatestValues 40 ps5000aGetTimebase 21, 41 ps5000aGetTimebase2 42 ps5000aGetTriggerTimeOffset 43 ps5000aGetTriggerTimeOffset64 44 ps5000aGetUnitInfo 45 ps5000aGetValues 10,47 ps5000aGetValuesAsync 10, 49 ps5000aGetValuesBulk 50 ps5000aGetValuesOverlapped 51 ps5000aGetValuesOverlappedBulk 53 ps5000aGetValuesTriggerTimeOffsetBulk 54 **Functions** ps5000aGetValuesTriggerTimeOffsetBulk64 56 ps5000alsReady 57 ps5000alsTriggerOrPulseWidthQualifierEnabled 58 ps5000aMaximumValue 5, 59 ps5000aMemorySegments 60 ps5000aMinimumValue 5, 61 ps5000aNoOfStreamingValues 62 ps5000aOpenUnit 63 ps5000aOpenUnitAsync 64 ps5000aOpenUnitProgress 65 66 ps5000aPingUnit ps5000aRunBlock 67 ps5000aRunStreaming 69 ps5000aSetChannel 5,72 74 ps5000aSetDataBuffer ps5000aSetDataBuffers 75 ps5000aSetDeviceResolution 76 ps5000aSetEts 16,77 ps5000aSetEtsTimeBuffer 78 ps5000aSetEtsTimeBuffers 79 ps5000aSetNoOfCaptures 80 ps5000aSetPulseWidthQualifier 81 ps5000aSetSigGenArbitrary 84 ps5000aSetSigGenBuiltIn 88 92 ps5000aSetSigGenPropertiesArbitrary ps5000aSetSigGenPropertiesBuiltIn 93 ps5000aSetSimpleTrigger 6, 94 ps5000aSetTriggerChannelConditions 6,95 ps5000aSetTriggerChannelDirections 6,97 ps5000aSetTriggerChannelProperties 6,98 ps5000aSetTriggerDelay 100 ps5000aSigGenArbitraryMinMaxValues 101 ps5000aSigGenFrequencyToPhase 102 ps5000aSigGenSoftwareControl 103 ps5000aStop 10, 104 ps5000aStreamingReady 105

G

Glossary 116

Η

Hysteresis 99

I

Index modes 86 Input range, selecting 72 Intended use 1

L

LED flashing 32 Legal information 2 Liability 2

Μ

Memory in scope 8 Mission-critical applications 2 Multi-unit operation 23

Ν

Numeric data types 115

0

One-shot signals 16 Opening a unit 63 checking progress 65 without blocking 64 Overvoltage 117

Ρ

PC Oscilloscope 1 PC requirements .3 PICO_STATUS enum type 109 PicoScope 5000 Series PicoScope software 1, 4, 109 Power options flexible power options 22 Power source 27, 29 Programming examples 108 ps5000a.dll 4 PS5000A_CONDITION_ constants 83 PS5000A_LEVEL constant 99 PS5000A_PWQ_CONDITIONS structure 83 PS5000A_RATIO_MODE_AGGREGATE 48 PS5000A_RATIO_MODE_AVERAGE 48 PS5000A_RATIO_MODE_DECIMATE 48 PS5000A_TIME_UNITS constant 43,44 PS5000A_TRIGGER_CHANNEL_PROPERTIES structure 99 PS5000A_TRIGGER_CONDITION constants 96 PS5000A_TRIGGER_CONDITIONS 95 PS5000A_TRIGGER_CONDITIONS structure 96 PS5000A_WINDOW constant 99 Pulse-width qualifier 81 conditions 83 58 requesting status

R

Ranges 34 Rapid block mode 7, 11, 38, 39 aggregation 15 no aggregation 13 setting number of captures 80 using 11 Resolution PS5000A_DEVICE_RESOLUTION 63 vertical 117 Retrieving data 47, 49 block mode, deferred 51 rapid block mode 50 rapid block mode, deferred 53 stored 20 streaming mode 40 Retrieving times rapid block mode 54, 56

S

Sampling rate maximum 8, 117 Scaling 5 Segmented memory 8, 9, 18 ps5000aMemorySegments 60 Serial numbers 31 Setup time 8 Signal generator 117 arbitrary waveforms 84 built-in waveforms 88 calculating phase 102 software trigger 103 Spectrum analyzer 1 Status codes 109 Stopping sampling 104 Streaming mode 7, 18, 117 callback 105 getting number of samples 62 retrieving data 40 running 69 using 18 Support 2

Т

Threshold voltage 6 Time buffers setting for ETS 78, 79 Timebase 21 calculating 41, 42 Trademarks 2 Trigger 6 channel properties 98 conditions 95, 96 delay 100 directions 97 external 5 pulse-width qualifier 81 pulse-width qualifier conditions 83 requesting status 58 setting up 94 stability 16 time offset 43, 44

U

Unit information, reading 45 Upgrades 2 Usage 2 USB 1, 3, 117 hub 23

V

Viruses 2 Voltage range 5, 117 selecting 72

W

WinUsb.sys 4

UK headquarters

Pico Technology James House Colmworth Business Park St. Neots Cambridgeshire PE19 8YP United Kingdom

Tel: +44 (0) 1480 396 395 Fax: +44 (0) 1480 396 296

sales@picotech.com support@picotech.com

www.picotech.com

USA headquarters

Pico Technology 320 N Glenwood Blvd Tyler Texas 75702 United States of America

Tel: +1 800 591 2796 Fax: +1 620 272 0981

ps5000apg.en r3 2016-06-29 Copyright © 2013–2016 Pico Technology Limited. All rights reserved.